Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    Machine Learning Technique to Detect Radiations in the Brain

    E. Gothai1,*, A. Baseera2, P. Prabu3, K. Venkatachalam4, K. Saravanan5, S. SathishKumar6

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 149-163, 2022, DOI:10.32604/csse.2022.020619 - 02 December 2021

    Abstract The brain of humans and other organisms is affected in various ways through the electromagnetic field (EMF) radiations generated by mobile phones and cell phone towers. Morphological variations in the brain are caused by the neurological changes due to the revelation of EMF. Cellular level analysis is used to measure and detect the effect of mobile radiations, but its utilization seems very expensive, and it is a tedious process, where its analysis requires the preparation of cell suspension. In this regard, this research article proposes optimal broadcasting learning to detect changes in brain morphology due… More >

  • Open Access

    ARTICLE

    DDoS Detection in SDN using Machine Learning Techniques

    Muhammad Waqas Nadeem, Hock Guan Goh*, Vasaki Ponnusamy, Yichiet Aun

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 771-789, 2022, DOI:10.32604/cmc.2022.021669 - 03 November 2021

    Abstract Software-defined network (SDN) becomes a new revolutionary paradigm in networks because it provides more control and network operation over a network infrastructure. The SDN controller is considered as the operating system of the SDN based network infrastructure, and it is responsible for executing the different network applications and maintaining the network services and functionalities. Despite all its tremendous capabilities, the SDN face many security issues due to the complexity of the SDN architecture. Distributed denial of services (DDoS) is a common attack on SDN due to its centralized architecture, especially at the control layer of… More >

  • Open Access

    ARTICLE

    Prediction of Cardiovascular Disease Using Machine Learning Technique—A Modern Approach

    Visvasam Devadoss Ambeth Kumar1, Chetan Swarup2, Indhumathi Murugan1, Abhishek Kumar3, Kamred Udham Singh4, Teekam Singh5, Ramu Dubey6,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 855-869, 2022, DOI:10.32604/cmc.2022.021582 - 03 November 2021

    Abstract Cardio Vascular disease (CVD), involving the heart and blood vessels is one of the most leading causes of death throughout the world. There are several risk factors for causing heart diseases like sedentary lifestyle, unhealthy diet, obesity, diabetes, hypertension, smoking and consumption of alcohol, stress, hereditary factory etc. Predicting cardiovascular disease and improving and treating the risk factors at an early stage are of paramount importance to save the precious life of a human being. At present, the highly stressful life with bad lifestyle activities causes heart disease at a very young age. The main… More >

  • Open Access

    ARTICLE

    Industrial Datasets with ICS Testbed and Attack Detection Using Machine Learning Techniques

    Sinil Mubarak1, Mohamed Hadi Habaebi1,*, Md Rafiqul Islam1, Asaad Balla1, Mohammad Tahir2, Elfatih A. A. Elsheikh3, F. M. Suliman3

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1345-1360, 2022, DOI:10.32604/iasc.2022.020801 - 09 October 2021

    Abstract Industrial control systems (ICS) are the backbone for the implementation of cybersecurity solutions. They are susceptible to various attacks, due to openness in connectivity, unauthorized attempts, malicious attacks, use of more commercial off the shelf (COTS) software and hardware, and implementation of Internet protocols (IP) that exposes them to the outside world. Cybersecurity solutions for Information technology (IT) secured with firewalls, intrusion detection/protection systems do nothing much for Operational technology (OT) ICS. An innovative concept of using real operational technology network traffic-based testbed, for cyber-physical system simulation and analysis, is presented. The testbed is equipped… More >

  • Open Access

    ARTICLE

    Fusion-Based Supply Chain Collaboration Using Machine Learning Techniques

    Naeem Ali1, Taher M. Ghazal2,3, Alia Ahmed1, Sagheer Abbas4, M. A. Khan5, Haitham M. Alzoubi6, Umar Farooq7, Munir Ahmad4, Muhammad Adnan Khan8,*

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1671-1687, 2022, DOI:10.32604/iasc.2022.019892 - 09 October 2021

    Abstract Supply Chain Collaboration is the network of various entities that work cohesively to make up the entire process. The supply chain organizations’ success is dependent on integration, teamwork, and the communication of information. Every day, supply chain and business players work in a dynamic setting. They must balance competing goals such as process robustness, risk reduction, vulnerability reduction, real financial risks, and resilience against just-in-time and cost-efficiency. Decision-making based on shared information in Supply Chain Collaboration constitutes the recital and competitiveness of the collective process. Supply Chain Collaboration has prompted companies to implement the perfect… More >

  • Open Access

    ARTICLE

    Autism Spectrum Disorder Diagnosis Using Ensemble ML and Max Voting Techniques

    A. Arunkumar1,*, D. Surendran2

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 389-404, 2022, DOI:10.32604/csse.2022.020256 - 08 October 2021

    Abstract Difficulty in communicating and interacting with other people are mainly due to the neurological disorder called autism spectrum disorder (ASD) diseases. These diseases can affect the nerves at any stage of the human being in childhood, adolescence, and adulthood. ASD is known as a behavioral disease due to the appearances of symptoms over the first two years that continue until adulthood. Most of the studies prove that the early detection of ASD helps improve the behavioral characteristics of patients with ASD. The detection of ASD is a very challenging task among various researchers. Machine learning… More >

  • Open Access

    ARTICLE

    Detecting Lung Cancer Using Machine Learning Techniques

    Ashit Kumar Dutta*

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1007-1023, 2022, DOI:10.32604/iasc.2022.019778 - 22 September 2021

    Abstract In recent days, Internet of Things (IoT) based image classification technique in the healthcare services is becoming a familiar concept that supports the process of detecting cancers with Computer Tomography (CT) images. Lung cancer is one of the perilous diseases that increases the mortality rate exponentially. IoT based image classifiers have the ability to detect cancer at an early stage and increases the life span of a patient. It supports oncologist to monitor and evaluate the health condition of a patient. Also, it can decipher cancer risk marker and act upon them. The process of… More >

  • Open Access

    ARTICLE

    Applying Machine Learning Techniques for Religious Extremism Detection on Online User Contents

    Shynar Mussiraliyeva1, Batyrkhan Omarov1,*, Paul Yoo1,2, Milana Bolatbek1

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 915-934, 2022, DOI:10.32604/cmc.2022.019189 - 07 September 2021

    Abstract In this research paper, we propose a corpus for the task of detecting religious extremism in social networks and open sources and compare various machine learning algorithms for the binary classification problem using a previously created corpus, thereby checking whether it is possible to detect extremist messages in the Kazakh language. To do this, the authors trained models using six classic machine-learning algorithms such as Support Vector Machine, Decision Tree, Random Forest, K Nearest Neighbors, Naive Bayes, and Logistic Regression. To increase the accuracy of detecting extremist texts, we used various characteristics such as Statistical More >

  • Open Access

    ARTICLE

    Alzheimer’s Disease Diagnosis Based on a Semantic Rule-Based Modeling and Reasoning Approach

    Nora Shoaip1, Amira Rezk1, Shaker EL-Sappagh2,3, Tamer Abuhmed4,*, Sherif Barakat1, Mohammed Elmogy5

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3531-3548, 2021, DOI:10.32604/cmc.2021.019069 - 24 August 2021

    Abstract Alzheimer’s disease (AD) is a very complex disease that causes brain failure, then eventually, dementia ensues. It is a global health problem. 99% of clinical trials have failed to limit the progression of this disease. The risks and barriers to detecting AD are huge as pathological events begin decades before appearing clinical symptoms. Therapies for AD are likely to be more helpful if the diagnosis is determined early before the final stage of neurological dysfunction. In this regard, the need becomes more urgent for biomarker-based detection. A key issue in understanding AD is the need… More >

  • Open Access

    ARTICLE

    An Improved Machine Learning Technique with Effective Heart Disease Prediction System

    Mohammad Tabrez Quasim1, Saad Alhuwaimel2,*, Asadullah Shaikh3, Yousef Asiri3, Khairan Rajab3, Rihem Farkh4,5, Khaled Al Jaloud4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 4169-4181, 2021, DOI:10.32604/cmc.2021.015984 - 24 August 2021

    Abstract Heart disease is the leading cause of death worldwide. Predicting heart disease is challenging because it requires substantial experience and knowledge. Several research studies have found that the diagnostic accuracy of heart disease is low. The coronary heart disorder determines the state that influences the heart valves, causing heart disease. Two indications of coronary heart disorder are strep throat with a red persistent skin rash, and a sore throat covered by tonsils or strep throat. This work focuses on a hybrid machine learning algorithm that helps predict heart attacks and arterial stiffness. At first, we More >

Displaying 31-40 on page 4 of 49. Per Page