Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access


    A Hybrid Model for Reliability Aware and Energy-Efficiency in Multicore Systems

    Samar Nour1,*, Sameh A. Salem1,2, Shahira M. Habashy1

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4447-4466, 2022, DOI:10.32604/cmc.2022.020775

    Abstract Recently, Multicore systems use Dynamic Voltage/Frequency Scaling (DV/FS) technology to allow the cores to operate with various voltage and/or frequencies than other cores to save power and enhance the performance. In this paper, an effective and reliable hybrid model to reduce the energy and makespan in multicore systems is proposed. The proposed hybrid model enhances and integrates the greedy approach with dynamic programming to achieve optimal Voltage/Frequency (Vmin/F) levels. Then, the allocation process is applied based on the available workloads. The hybrid model consists of three stages. The first stage gets the optimum safe voltage while the second stage sets… More >

  • Open Access


    Scheduling Flexible Flow Shop in Labeling Companies to Minimize the Makespan

    Chia-Nan Wang1, Hsien-Pin Hsu2, Hsin-Pin Fu3,*, Nguyen Ky Phuc Phan4, Van Thanh Nguyen5

    Computer Systems Science and Engineering, Vol.40, No.1, pp. 17-36, 2022, DOI:10.32604/csse.2022.016992

    Abstract In the competitive global marketplace, production scheduling plays a vital role in planning in manufacturing. Scheduling deals directly with the time to output products quickly and with a low production cost. This research examines case study of a Radio-Frequency Identification labeling department at Avery Dennison. The main objective of the company is to have a method that allows for the sequencing and scheduling of a set of jobs so it can be completed on or before the customer’s due date to minimize the number of late orders. This study analyzes the flexible flow shop scheduling problem with a sequence dependent… More >

  • Open Access


    Monarch Butterfly Optimization for Reliable Scheduling in Cloud

    B. Gomathi1, S. T. Suganthi2,*, Karthikeyan Krishnasamy3, J. Bhuvana4

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3693-3710, 2021, DOI:10.32604/cmc.2021.018159

    Abstract Enterprises have extensively taken on cloud computing environment since it provides on-demand virtualized cloud application resources. The scheduling of the cloud tasks is a well-recognized NP-hard problem. The Task scheduling problem is convoluted while convincing different objectives, which are dispute in nature. In this paper, Multi-Objective Improved Monarch Butterfly Optimization (MOIMBO) algorithm is applied to solve multi-objective task scheduling problems in the cloud in preparation for Pareto optimal solutions. Three different dispute objectives, such as makespan, reliability, and resource utilization, are deliberated for task scheduling problems.The Epsilon-fuzzy dominance sort method is utilized in the multi-objective domain to elect the foremost… More >

  • Open Access


    A Compromise Programming to Task Assignment Problem in Software Development Project

    Ngo Tung Son1,2,*, Jafreezal Jaafar1, Izzatdin Abdul Aziz1, Bui Ngoc Anh2, Hoang Duc Binh2, Muhammad Umar Aftab3

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3429-3444, 2021, DOI:10.32604/cmc.2021.017710

    Abstract The scheduling process that aims to assign tasks to members is a difficult job in project management. It plays a prerequisite role in determining the project’s quality and sometimes winning the bidding process. This study aims to propose an approach based on multi-objective combinatorial optimization to do this automatically. The generated schedule directs the project to be completed with the shortest critical path, at the minimum cost, while maintaining its quality. There are several real-world business constraints related to human resources, the similarity of the tasks added to the optimization model, and the literature’s traditional rules. To support the decision-maker… More >

  • Open Access


    Fault Aware Dynamic Resource Manager for Fault Recognition and Avoidance in Cloud

    Nandhini Jembu Mohanram1,2,*, Gnanasekaran Thangavel3, N. M. Jothi Swaroopan4

    Computer Systems Science and Engineering, Vol.38, No.2, pp. 215-228, 2021, DOI:10.32604/csse.2021.015027

    Abstract Fault tolerance (FT) schemes are intended to work on a minimized and static amount of physical resources. When a host failure occurs, the conventional FT frequently proceeds with the execution on the accessible working hosts. This methodology saves the execution state and applications to complete without disruption. However, the dynamicity of open cloud assets is not seen when taking scheduling choices. Existing optimization techniques are intended in dealing with resource scheduling. This method will be utilized for distributing the approaching tasks to the VMs. However, the dynamic scheduling for this procedure doesn’t accomplish the objective of adaptation of internal failure.… More >

  • Open Access


    A Load Balanced Task Scheduling Heuristic for Large-Scale Computing Systems

    Sardar Khaliq uz Zaman1, Tahir Maqsood1, Mazhar Ali1, Kashif Bilal1, Sajjad A. Madani1, Atta ur Rehman Khan2,*

    Computer Systems Science and Engineering, Vol.34, No.2, pp. 79-90, 2019, DOI:10.32604/csse.2019.34.079

    Abstract Optimal task allocation in Large-Scale Computing Systems (LSCSs) that endeavors to balance the load across limited computing resources is considered an NP-hard problem. MinMin algorithm is one of the most widely used heuristic for scheduling tasks on limited computing resources. The MinMin minimizes makespan compared to other algorithms, such as Heterogeneous Earliest Finish Time (HEFT), duplication based algorithms, and clustering algorithms. However, MinMin results in unbalanced utilization of resources especially when majority of tasks have lower computational requirements. In this work we consider a computational model where each machine has certain bounded capacity to execute a predefined number of tasks… More >

Displaying 11-20 on page 2 of 16. Per Page