Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (765)
  • Open Access

    PROCEEDINGS

    Micromechanical Analysis of Discontinuous Flax Fiber Reinforced Epoxy Composites

    Zhoucheng Su1,*, Dan Wang1, Yucheng Zhong2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012259

    Abstract In this study, we developed a micromechanical model for exploring the longitudinal tensile behavior of unidirectional discontinuous flax fiber reinforced epoxy composites, emphasizing the significant roles of the aspect ratio of fibers and fiber-matrix interfacial properties. Representative volume elements (RVEs) are built using a novel approach which accounts for the randomness of the fiber distribution, discontinuity of the fibers, and the modeling of the interfaces as cohesive zone elements.
    Finite element simulations of the RVEs under longitudinal tension were performed with proper periodic boundary conditions (PBCs). We investigated how fiber aspect ratio, interfacial properties and matrix… More >

  • Open Access

    PROCEEDINGS

    Design of 3D Printable Microlattices for Sound Absorption

    Xinwei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011083

    Abstract The emergence of 3D printing opens new possibilities for the development of advanced and innovative metamaterials, particularly in the realm of microlattices. Microlattices are characterized as periodic cellular solids with submillimeter-sized features, such as struts, shells, or plates, arranged spatially in a three-dimensional way. Herein, based on four published studies, we provide a perspective on the design, employing analytical and numerical methods, as well as the performance of 3D-printed microlattices for sound absorption.
    The first study focuses on face-centered cubic-based plate and truss structures [1]. Impedance tube measurements reveal that all the microlattices display absorption curves… More >

  • Open Access

    PROCEEDINGS

    Mechanism Analysis of Thermal Pain and Mechanical Matching of Stretchable Bio-Integrated Devices Integrated on Biological Tissues

    Yuhang Li1,*, Jin Nan1, Yang Wang1, Yafei Yin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.013412

    Abstract As a new type of electronic device, stretchable bio-integrated devices are generally composed of inorganic functional components, stretchable interconnected structures, soft biocompatible substrates and encapsulations, and have wide adaptability to a variety of complex surfaces of soft biological tissues. The small size of functional components, the thin substrate thickness, and poor thermal conductivity can easily lead to thermal burns caused by local temperature concentration in biological tissues. The unique microstructure characteristics and biological thermal characteristics of biological tissues make the heat transfer behavior of integrated devices in biological tissues significantly different from the traditional Fourier… More >

  • Open Access

    PROCEEDINGS

    In-Silico Automated 3D Reconstruction of the Biomechanical Trapeziometacarpal Joint from 4D Imaging

    Yen-Jen Lai1, I-Ling Chang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012918

    Abstract Biomechanical research reveals that the geometric shapes and dynamic behaviors of organ tissues play a pivotal role in determining their mechanical properties. Recent advancements in time-correlated imaging technologies, such as Computed Tomography (4D-CT) and Magnetic Resonance Imaging (4D-MRI), have enabled the non-invasive capture of both geometric data and dynamic information over time. However, the manual segmentation of these extensive datasets proves to be laborious and expensive. This study introduces an automated workflow designed for image segmentation and classification within 4D-CT scans, with a specific focus on the bone structures surrounding the Trapeziometacarpal (TMC) joint in More >

  • Open Access

    PROCEEDINGS

    Research on Impact Behavior of Diagonal Gradient Lattice Structure

    Yifan Zhu1,2, Fengxiang Xu1,2,*, Zhen Zou1,2, Xiaoqiang Niu1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-2, 2024, DOI:10.32604/icces.2024.011085

    Abstract Functionally graded lattice structures have garnered significant interest in impact research in recent years as novel structures because of the exceptional properties, including lightweight, high specific strength, and high specific stiffness. Aiming at the problem that the current functionally graded lattice structure incorporates gradient characteristics in the longitudinal or transverse direction, with no research on the diagonal gradient characteristics, this paper proposes a diagonal gradient lattice structure (DGLS) based on the body centered cubic (BCC) lattice structure. The quasi-static compression experiments were carried out on the resin samples manufactured through the photocuring molding technique. Besides,… More >

  • Open Access

    PROCEEDINGS

    Mechanically Programmable Meta-Crystals

    Minh-Son Pham1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011053

    Abstract Novel properties of meta-materials can be achieved thanks to precisely engineering sophisticated architecture of physical structures (i.e. meta-structuring). However, relying only on the meta-structuring limits possibilities in unlocking new properties, and severely affecting the performance and programmability of meta-materials. In contrast, the metallurgical approach focuses on engineering the natural crystals’ intrinsic microstructure, allowing us to develop metallic alloys with excellent properties and performance beyond what can be obtained by the chemical composition. Recent advances in additive manufacturing (publicly known as 3D printing) enable a precisely metallurgical microstructuring of crystals such as chemical composition, crystal phases More >

  • Open Access

    REVIEW

    First Principles Calculations for Corrosion in Mg-Li-Al Alloys with Focus on Corrosion Resistance: A Comprehensive Review

    Muhammad Abdullah Khan1, Muhammad Usman2, Yuhong Zhao1,3,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 1905-1952, 2024, DOI:10.32604/cmc.2024.054691 - 18 November 2024

    Abstract This comprehensive review examines the structural, mechanical, electronic, and thermodynamic properties of Mg-Li-Al alloys, focusing on their corrosion resistance and mechanical performance enhancement. Utilizing first-principles calculations based on Density Functional Theory (DFT) and the quasi-harmonic approximation (QHA), the combined properties of the Mg-Li-Al phase are explored, revealing superior incompressibility, shear resistance, and stiffness compared to individual elements. The review highlights the brittleness of the alloy, supported by B/G ratios, Cauchy pressures, and Poisson’s ratios. Electronic structure analysis shows metallic behavior with varied covalent bonding characteristics, while Mulliken population analysis emphasizes significant electron transfer within the… More >

  • Open Access

    PROCEEDINGS

    Identification of the Anisotropic Thermal-Mechanical Properties of Sheet Metals Using the Virtual Fields Method

    Jiawei Fu1,2,*, Yahui Cai1, Bowen Zhang1, Zengxiang Qi1, Lehua Qi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013007

    Abstract The accurate characterization of the anisotropic thermal-mechanical constitutive properties of structural sheet metals at elevated temperatures and under nonuniform stress/strain states is crucial for the precise hot plastic forming and structural behavior evaluation of an engineering sheet part. Traditional thermal-mechanical testing methods rely on the assumption of states homogeneity, leading to a large number of tests required for the characterization of material anisotropy and nonlinearity at various high temperatures. In this work, a highly efficient identification method is proposed that allows the simultaneous characterization of the anisotropic yielding, strain hardening and elasto-plasticity thermal softening material More >

  • Open Access

    PROCEEDINGS

    Microstructural Evolution, Mechanical Properties and Corrosion Behaviors of Additively Manufactured Biodegradable Zn-Cu Alloys

    Bo Liu1,2,*, Jia Xie2, Gonghua Chen2, Yugang Gong2, Hongliang Yao1, Tiegang Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012904

    Abstract Biodegradable metal implants that meet clinical applications require good mechanical properties and an appropriate biodegradation rate. Additively manufactured (AM) biodegradable zinc (Zn) alloys constitute an essential branch of orthopedic implants because of their moderate degradation and bone-mimicking mechanical properties. This paper investigated the microstructural evolution and corrosion mechanisms of zinc-copper (Zn-Cu) alloys prepared by the laser-powder-bed-fusion (L-PBF) additive manufacturing method. Alloying with Cu significantly increases the ultimate tensile strength (UTS) of unalloyed Zn, but the UTS and ductility of unalloyed Zn and Zn-2Cu decrease with increasing laser energy density. Unalloyed Zn has a dendritic microstructure,… More >

  • Open Access

    PROCEEDINGS

    Modelling and Simulation on Deformation Behaviour and Strengthening Mechanism of Multi-Principal Element Alloys

    Yang Chen1, Baobin Xie1, Weizheng Lu1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011624

    Abstract In order to accurately predict and evaluate the mechanical properties of multi-principal element alloys (MPEAs), some new models and simulation methods need to be developed to solve the problems caused by its unique natural characteristics, such as severe lattice distortion. The existing models are based on the development of low concentration alloys, and cannot be well applied to MPEAs. Here, we develop i) the random field theory informed discrete dislocation dynamics simulations based on high-resolution transmission electron microscopy, to systematically clarify the role of heterogeneous lattice strain on the complex interactions between the dislocation loop… More >

Displaying 91-100 on page 10 of 765. Per Page