Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (684)
  • Open Access

    PROCEEDINGS

    Chemo-Mechanical Peridynamic Simulation of Dynamic Fracture-Pattern Formation in Lithium-Ion Batteries

    Xiaofei Wang1, Qi Tong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09181

    Abstract Mechanical failure due to lithium-ion diffusion is one of the main obstacles to fulfill the potential of the electrode materials. Various fracture patterns in different electrode structures are observed in practice, which may have a profound impact on the performance and the service life of electrodes during operation. However, the mechanisms are largely unclear and still lack systematic understanding. Here we propose a coupled chemo-mechanical model based on peridynamics [1] and use it to study the dynamic fracturepattern formation in electrode materials and solid electrolytes during lithiation/delithiation cycles. We found in hollow core-shell nanowires that More >

  • Open Access

    ARTICLE

    Biomechanical Analysis of Tai Chi (Eight Methods and Five Steps) for Athletes’ Body Balance Control

    Yuanyuan Feng*

    Molecular & Cellular Biomechanics, Vol.20, No.2, pp. 97-108, 2023, DOI:10.32604/mcb.2023.045804 - 28 December 2023

    Abstract Background: The increasing number of Tai Chi practitioners has led to extensive attention from researchers regarding the role of Tai Chi exercise. Numerous studies have been conducted through various experiments to examine the effects of Tai Chi on physical and mental improvement. Objective: This paper aims to investigate the effect of practicing Tai Chi (eight methods and five steps) on athletes’ body balance control ability from a biomechanical perspective. Methods: Twenty male athletes were randomly divided into two groups. They had no significant differences in age, height, weight, and training time. The Tai Chi group performed… More > Graphic Abstract

    Biomechanical Analysis of Tai Chi (Eight Methods and Five Steps) for Athletes’ Body Balance Control

  • Open Access

    ARTICLE

    Influence of Bayer Red Mud on the Operational and Mechanical Characteristics of Composite Cement Mortar

    Cheng Hu1,2, Weiheng Xiang1,3,*, Ping Chen2,3, Yi Yang4,5, Libo Zhou3, Jiufang Jiang5, Shunkai Li2,4, Yang Ming1, Qing Li3

    Journal of Renewable Materials, Vol.11, No.11, pp. 3945-3956, 2023, DOI:10.32604/jrm.2023.027544 - 31 October 2023

    Abstract The aim of this study is to enhance the value and utilization of red mud generated in the Bayer process by preparing composite cement mortars. The effects of two different types of Bayer red mud with varying physical and chemical characteristics on the fluidity, mechanical strength, mineral composition, and microstructure of the composite cement mortar were systematically evaluated. The results showed that the optimal addition of red mud A was 10 wt%, while it was 20 wt% for red mud B. The mechanical properties of the composite cement mortar met the standards for P·O42.5 cement. More >

  • Open Access

    PROCEEDINGS

    The Mechanical Property of 2D Materials and Potential Application in Gas Separation

    Dong Li1,*, Yonggang Zheng1, Hongwu Zhang1, Hongfei Ye1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09714

    Abstract The family of 2D transition-metal oxides and dichalcogenides with 1H phase (1H-MX2) has sparked great interest from the perspective of basic physics and applied science. Interestingly, their performances could be further regulated and improved through strain engineering. Effective regulation is founded on a wellunderstood mechanical performance, however, the large number of 1H-MX2 materials has not yet been revealed. Here, a general theoretical model is constructed based on the molecular mechanics, which provides an effective and rapid analytical algorithm for evaluating the mechanical properties of the entire family of 1H-MX2. The validity of the constructed model is verified… More >

  • Open Access

    PROCEEDINGS

    A Data-Fusion Method for Uncertainty Quantification of Mechanical Property of Bi-Modulus Materials: An Example of Graphite

    Liang Zhang1,*, Zigang He1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09713

    Abstract The different elastic properties of tension and compression are obvious in many engineering materials, especially new materials. Materials with this characteristic, such as graphite, ceramics, and composite materials, are called bi-modulus materials. Their mechanical properties such as Young’s modulus have randomness in tension and compression due to different porosity, microstructure, etc. To calibrate the mechanical properties of bi-modulus materials by bridging FEM simulation results and scarce experimental data, the paper presents a data-fusion computational method. The FEM simulation is implemented based on Parametric Variational Principle (PVP), while the experimental result is obtained by Digital Image… More >

  • Open Access

    PROCEEDINGS

    Development of Small Punch Test to Research the Mechanical Properties of Nuclear Fuel Cladding Tubes

    Huansheng Lai1,*, Xiaowei Jiang1, Yuntao Zhong2, Peinan Du2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09652

    Abstract Nuclear fuel cladding tubes have a outer diameter about 10 mm with a wall thickness about 0.5 mm. Their mechanical properties hence cannot be researched using standard test methods. In this study, small punch test (SPT) was developed to research the mechanical properties of nuclear fuel cladding tubes. Instead of plate SPT specimen, tube specimen was used to research fracture toughness and creep properties. Fninite elment simulation based on GTN model was used to verify the proposed method. Results indicated that the tube specimen with a noth can be sufficiently to research fracture toughness. The More >

  • Open Access

    PROCEEDINGS

    Zonal Finite Line Method and Its Applications in Thermal-Mechanical Analysis of Composite Structures

    Xiaowei Gao1,*, Huayu Liu1, Weilong Fan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09510

    Abstract In this paper, a novel numerical method, Zonal Free Element Method (ZFLM), is proposed and used to solve thermal-mechanical problems composed of multiple and functionally graded materials. ZFLM is a collocation method, in which two or three lines in 2D or 3D problems, called as line-set, are used at each node to establish the solution scheme solving engineering problems governed by partial differential equations. In ZFLM, the Lagrange polynomial is adopted to approximate physical variables varying over each line of the line-set. The first-order partial derivative is derived by using a directional derivative technique along… More >

  • Open Access

    PROCEEDINGS

    Uniaxial Compressive Mechanical Properties of Three-Dimensional Graphene: Theoretical Models and Molecular Dynamics Simulations

    Xinliang Li1, Jiangang Guo1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09484

    Abstract As the first two-dimensional (2D) material discovered in experiments, graphene has attracted increasing attention from the scientific community [1]. And it possesses many superb mechanical, electronic and optical properties [2-4] due to its unique atomic structure. Its Young’s modulus and failure strength are 1TPa and 130GPa [5], respectively. Thus, 2D graphene has been extensively used in nanosensors and nanocomposites [6-8], etc. In order to fabricate graphene-based devices which inherit outstanding properties of 2D graphene, materials scientists are trying to use 2D graphene as building blocks to construct three-dimensional (3D) carbon nanomaterials, such as 3D graphene… More >

  • Open Access

    PROCEEDINGS

    A Thermo-Chemo-Mechanically Coupled Peridynamic Model for Investigating the Crack Behaviors of Deformable Solids with Heat Conduction, Species Diffusion, and Chemical Reactions

    Yu Xiang1, Bao Qin2, Zheng Zhong1,*, Zhenjun Jiao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09088

    Abstract A thermo-chemo-mechanically (TCM) coupled peridynamic (PD) model is proposed to analyze the crack behavior in solids considering heat conduction, species diffusion, and chemical reactions. A PD theoretical framework is established based on non-equilibrium thermodynamics. The influences of species diffusion and chemical reactions on the Helmholtz free energy density and the subsequent formation and propagation of cracks are distinguished by introducing the concentration of diffusive species and the extent of the chemical reaction. Furthermore, inter-physics coupling coefficients are calibrated by equating the corresponding field in the PD model to the continuum mechanics under the same condition. More >

  • Open Access

    PROCEEDINGS

    3D Analysis of Effect of Graphite Morphology on Thermomechanical Behaviour of CGI

    Minghua Cao1,*, Konstantinos P. Baxevanakis1, Vadim V. Silberschmidt1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09086

    Abstract Compacted graphite iron (CGI) was attractive as an important material for the industry since its introduction in the last century. Thanks to its high strength, great wear resistance and thermal conductivity, CGI became extensively applied in the automotive industry as engine parts: brake drums, cylinder heads and exhaust manifolds. As a metal-matrix composite, CGI contains two microstructural phases: graphite inclusions and a metallic matrix. The main fracture mechanism of CGI under high-temperature service conditions at macroscale is linked to graphite-matrix (interfacial) debonding, formation of microcracks and their networks, and final failure of the material at… More >

Displaying 81-90 on page 9 of 684. Per Page