Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (718)
  • Open Access

    ARTICLE

    Hydro-Mechanical Modelling of a Natural Slope Affected by a Multiple Slip Surface Failure Mechanism

    A. Ferrari1, L. Laloui1,2, Ch. Bonnard1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 217-236, 2009, DOI:10.3970/cmes.2009.052.217

    Abstract A coupled hydro-mechanical formulation is presented for the analysis of landslide motion during crisis episodes. The mathematical formulation is used to model a natural slope affected by a multiple slip surface failure mechanism, in which pore water pressure evolution was identified as the main cause for movement accelerations. An elasto-plastic constitutive model is adopted for the behaviour of slip surfaces. Material parameters are obtained by combining the available laboratory tests and the back analysis of some crisis episodes. After being calibrated and validated, the model is applied to improve the understanding of the physical processes More >

  • Open Access

    ARTICLE

    Modeling of the Inhibition-Mechanism Triggered by `Smartly' Sensed Interfacial Stress Corrosion and Cracking

    Sudib K. Mishra1, J. K. Paik2, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.1, pp. 67-96, 2009, DOI:10.3970/cmes.2009.050.067

    Abstract We present a simulation based study, by combining several models involving multiple time scales and physical processes, which govern the interfacial stress corrosion cracking (SCC) in grain boundaries, layered composites or bi-materials, and the mechanisms of inhibition using `smart' agents. The inhibiting agents described herein, automatically sense the initiation of damage, migrate to the sites and delay the corrosion kinetics involved in the process. The phenomenon of SCC is simulated using the lattice spring model (for the mechanical stresses), coupled with a finite difference model of diffusing species, causing the dissolution of the interfacial bonds.… More >

  • Open Access

    ARTICLE

    Modeling of a Surface Contact Stress for Spur Gear Mechanism using Static and Transient Finite Element Method

    F. R. M. Romlay1

    Structural Durability & Health Monitoring, Vol.4, No.1, pp. 19-28, 2008, DOI:10.3970/sdhm.2008.004.019

    Abstract This paper presents a surface contact static stress of a spur gear system combined with dynamic characteristic using transient Finite Element Method (FEM). Traditionally, the static stress analysis is done separately with dynamic properties due to limitation of complex equation and avoiding of error occurred. However, in this paper, static stress information is combined with the dynamic mechanism due to the time consuming during the design and analysis stage. A transient FEM analysis is carried out to formulate and solve large systems of algebraic equations in order to obtain a relationship between the contact parameter… More >

  • Open Access

    ABSTRACT

    An Experimental Method for Kinematic Measurement of a Four-Bar Mechanism by Digital Video Analysis

    Romy P. Moreno1, Mario G. Villeda2, Sergio A. V. Pruneda2, Zeferino D. Noriega2, Pedro G. Segura2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.1, pp. 19-24, 2008, DOI:10.3970/icces.2008.008.019

    Abstract Measuring the position, speed and acceleration of the moving elements of a mechanism usually involves external instrumentation that has to be attached to it, which is not always feasible. The method discussed here provides an alternative to measure these kinematics characteristics without modifying the components. To test the method in a controlled environment a four-bar mechanism was build. It was designed to be as thin as possible and to allow arbitrary changes in its lengths. Three commercial programs and a specially designed software (KIMA{\textregistered }) are used to record, analyze, measure, compute and verify the More >

  • Open Access

    ARTICLE

    Adhesive Models to Understand the Sensitivity of Bio-Molecules to Environmental Signals

    Shaohua Chen*

    Molecular & Cellular Biomechanics, Vol.5, No.2, pp. 97-106, 2008, DOI:10.3970/mcb.2008.005.097

    Abstract Recently, contact mechanics has been widely used to get some understanding of the biological adhesion mechanisms, such as cell-cell adhesion, insects' adhesion and locomotion. JKR theory is usually adopted as a basis, in which the interaction of molecules is considered in contrast to the classical Hertz solution. In this paper, two problems are summarized, which may give some insights to cells or bio-molecules sensitivity to environmental signals: (1) cell reorientation on a stretched substrate; (2) spontaneous detachment between cells or bio-molecules under the variation of environmental signals. The intention here is only to illustrate the… More >

  • Open Access

    ARTICLE

    A Deterministic Mechanism for Side-branching in Dendritic Growth

    Shuwang Li1, Xiangrong Li1, John Lowengrub1,2, Martin Glicksman3

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.1, pp. 27-42, 2008, DOI:10.3970/fdmp.2008.004.027

    Abstract In this paper, we suggest a deterministic mechanism for the generation and development of side-branches in dendritic growth. The present authors investigated recently [Glicksman, Lowengrub, and Li (2006)] the existence of such a deterministic branching mechanism induced through the Gibbs-Thomson-Herring (GTH [Herring (1951)]) anisotropic capillary boundary condition. In this paper, we focus our study on an anisotropic kinetic boundary condition. We develop and apply accurate boundary integral methods in 2D and 3D, in which a time and space rescaling scheme is implemented, that are capable of separating the dynamics of growth from those of morphology More >

  • Open Access

    ARTICLE

    Structural Integrity and Durability of High Voltage Composite (Non-Ceramic) Insulators

    M. Kumosa1

    Structural Durability & Health Monitoring, Vol.3, No.1, pp. 35-50, 2007, DOI:10.3970/sdhm.2007.003.035

    Abstract This paper deals with the structural integrity and durability of suspension composite (non-ceramic, polymer) insulators widely used in power transmission systems around the world. Under certain conditions, the insulators can fail in-service both electrically and mechanically resulting in the drop of energized transmission lines and power outages. In this work, predominantly mechanical failures of the insulators are discussed. In particular, the most important characteristics of a catastrophic failure process called brittle fracture are described. Subsequently, two examples of insulator failures by brittle fracture are shown and their causes explained. Finally, several recommendations on how to More >

  • Open Access

    ABSTRACT

    Control of Walking Robot by Inverse Dynamics of Link Mechanisms Using FEM

    S. Okamoto1, H. Noguchi2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 131-136, 2007, DOI:10.3970/icces.2007.002.131

    Abstract This paper presents a control of walking robot by using inverse dynamics of link mechanisms, which has already been proposed and applied in several in-plane motions. In this method, FEM is used for the discretization of equations of motion. This method calculates nodal forces by evaluating equations of motion in a matrix form, and thus information from the entire system can be handled efficiently, and the torques input to each joint of link mechanisms to achieve required motion are calculated easily. This method is suitable to the feed-forward control of closed-loop or continuously link mechanisms. More >

  • Open Access

    ARTICLE

    The Parallel Mechanism of Node-Based Seamless Finite Element Method

    Y.F. Nie1, S. Chang1, X.K. Fan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.2, pp. 135-144, 2007, DOI:10.3970/cmes.2007.019.135

    Abstract A new parallel mechanism for Node-based Seamless Finite Element Method was proposed in this paper, which possessed the following three prominent points: realizing the workload balance for the parallel processes naturally, achieving synchronization of all the schedules under complex parallel environment, and filling up the gap between pre-processing and main processing. To support the scheme, three specific solutions of the parallel mechanism were proposed in this paper, all of which achieved the highly efficient parallel seamless connection between the FEM mesh generation process and structure analysis process. Two of the three schemes, i.e. dynamic scheme More >

  • Open Access

    ARTICLE

    Contractile Torque as a Steering Mechanism for Orientation of Adherent Cells

    Dimitrije Stamenovic´ 1

    Molecular & Cellular Biomechanics, Vol.2, No.2, pp. 69-76, 2005, DOI:10.3970/mcb.2005.002.069

    Abstract It is well established that adherent cells change their orientation in response to non-uniform substrate stretching. Most observations indicate that cells orient away from the direction of the maximal substrate strain, whereas in some cases cells also align with the direction of the maximal strain. Previous studies suggest that orientation and steering of the cell may be closely tied to cytoskeletal contractile stress but they could not explain the mechanisms that direct cell reorientation. This led us to develop a simple, mechanistic theoretical model that could predict a direction of cell orientation in response to More >

Displaying 701-710 on page 71 of 718. Per Page