Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation

    Muwei Jian1,2,#,*, Ronghua Wu1,#, Hongyu Chen1, Lanqi Fu3, Chengdong Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 705-716, 2023, DOI:10.32604/cmes.2023.027425

    Abstract In intelligent perception and diagnosis of medical equipment, the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases (e.g., diabetes and hypertension). Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results. To address this challenge, we design a Dual-Branch-UNet framework, which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation. To be more explicit, we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of the original U-Net. Then, image… More >

  • Open Access

    ARTICLE

    Intelligent Beetle Antenna Search with Deep Transfer Learning Enabled Medical Image Classification Model

    Mohamed Ibrahim Waly*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3159-3174, 2023, DOI:10.32604/csse.2023.035900

    Abstract Recently, computer assisted diagnosis (CAD) model creation has become more dependent on medical picture categorization. It is often used to identify several conditions, including brain disorders, diabetic retinopathy, and skin cancer. Most traditional CAD methods relied on textures, colours, and forms. Because many models are issue-oriented, they need a more substantial capacity to generalize and cannot capture high-level problem domain notions. Recent deep learning (DL) models have been published, providing a practical way to develop models specifically for classifying input medical pictures. This paper offers an intelligent beetle antenna search (IBAS-DTL) method for classifying medical images facilitated by deep transfer… More >

  • Open Access

    REVIEW

    Application of U-Net and Optimized Clustering in Medical Image Segmentation: A Review

    Jiaqi Shao1,#, Shuwen Chen1,2,3,#,*, Jin Zhou1,#, Huisheng Zhu1, Ziyi Wang1, Mackenzie Brown4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2173-2219, 2023, DOI:10.32604/cmes.2023.025499

    Abstract As a mainstream research direction in the field of image segmentation, medical image segmentation plays a key role in the quantification of lesions, three-dimensional reconstruction, region of interest extraction and so on. Compared with natural images, medical images have a variety of modes. Besides, the emphasis of information which is conveyed by images of different modes is quite different. Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors. Therefore, large quantities of automated medical image segmentation methods have been developed. However, until now, researchers have not developed a universal method for all… More >

  • Open Access

    ARTICLE

    Fusion Strategy for Improving Medical Image Segmentation

    Fahad Alraddady1, E. A. Zanaty2, Aida H. Abu bakr3, Walaa M. Abd-Elhafiez4,5,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3627-3646, 2023, DOI:10.32604/cmc.2023.027606

    Abstract In this paper, we combine decision fusion methods with four meta-heuristic algorithms (Particle Swarm Optimization (PSO) algorithm, Cuckoo search algorithm, modification of Cuckoo Search (CS McCulloch) algorithm and Genetic algorithm) in order to improve the image segmentation. The proposed technique based on fusing the data from Particle Swarm Optimization (PSO), Cuckoo search, modification of Cuckoo Search (CS McCulloch) and Genetic algorithms are obtained for improving magnetic resonance images (MRIs) segmentation. Four algorithms are used to compute the accuracy of each method while the outputs are passed to fusion methods. In order to obtain parts of the points that determine similar… More >

  • Open Access

    ARTICLE

    Inner Cascaded U2-Net: An Improvement to Plain Cascaded U-Net

    Wenbin Wu1, Guanjun Liu1,*, Kaiyi Liang2, Hui Zhou2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1323-1335, 2023, DOI:10.32604/cmes.2022.020428

    Abstract Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction. U-Net has been the baseline model since the very beginning due to a symmetrical U-structure for better feature extraction and fusing and suitable for small datasets. To enhance the segmentation performance of U-Net, cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine. However, the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the… More >

  • Open Access

    ARTICLE

    Semi-Supervised Medical Image Segmentation Based on Generative Adversarial Network

    Yun Tan1,2, Weizhao Wu2, Ling Tan3, Haikuo Peng2, Jiaohua Qin2,*

    Journal of New Media, Vol.4, No.3, pp. 155-164, 2022, DOI:10.32604/jnm.2022.031113

    Abstract At present, segmentation for medical image is mainly based on fully supervised model training, which consumes a lot of time and labor for dataset labeling. To address this issue, we propose a semi-supervised medical image segmentation model based on a generative adversarial network framework for automated segmentation of arteries. The network is mainly composed of two parts: a segmentation network for medical image segmentation and a discriminant network for evaluating segmentation results. In the initial stage of network training, a fully supervised training method is adopted to make the segmentation network and the discrimination network have certain segmentation and discrimination… More >

  • Open Access

    ARTICLE

    Generative Deep Belief Model for Improved Medical Image Segmentation

    Prasanalakshmi Balaji*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1-14, 2023, DOI:10.32604/iasc.2023.026341

    Abstract Medical image assessment is based on segmentation at its fundamental stage. Deep neural networks have been more popular for segmentation work in recent years. However, the quality of labels has an impact on the training performance of these algorithms, particularly in the medical image domain, where both the interpretation cost and inter-observer variation are considerable. For this reason, a novel optimized deep learning approach is proposed for medical image segmentation. Optimization plays an important role in terms of resources used, accuracy, and the time taken. The noise in the raw medical image are processed using Quasi-Continuous Wavelet Transform (QCWT). Then,… More >

  • Open Access

    ARTICLE

    Mu-Net: Multi-Path Upsampling Convolution Network for Medical Image Segmentation

    Jia Chen1, Zhiqiang He1, Dayong Zhu1, Bei Hui1,*, Rita Yi Man Li2, Xiao-Guang Yue3,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 73-95, 2022, DOI:10.32604/cmes.2022.018565

    Abstract Medical image segmentation plays an important role in clinical diagnosis, quantitative analysis, and treatment process. Since 2015, U-Net-based approaches have been widely used for medical image segmentation. The purpose of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps. However, the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of some high-level information. More high-level information can make the segmentation more accurate. In this paper, we propose MU-Net, a novel, multi-path upsampling convolution network to retain more high-level information. The MU-Net mainly consists of three parts: contracting… More >

  • Open Access

    ARTICLE

    MRI Image Segmentation of Nasopharyngeal Carcinoma Using Multi-Scale Cascaded Fully Convolutional Network

    Yanfen Guo1,2, Zhe Cui1, Xiaojie Li2,*, Jing Peng1,2, Jinrong Hu2, Zhipeng Yang3, Tao Wu2, Imran Mumtaz4

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1771-1782, 2022, DOI:10.32604/iasc.2022.019785

    Abstract Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors of the head and neck, and its incidence is the highest all around the world. Intensive radiotherapy using computer-aided diagnosis is the best technique for the treatment of NPC. The key step of radiotherapy is the delineation of the target areas and organs at risk, that is, tumor images segmentation. We proposed the segmentation method of NPC image based on multi-scale cascaded fully convolutional network. It used cascaded network and multi-scale feature for a coarse-to-fine segmentation to improve the segmentation effect. In coarse segmentation, image blocks and data augmentation… More >

  • Open Access

    ARTICLE

    AF-Net: A Medical Image Segmentation Network Based on Attention Mechanism and Feature Fusion

    Guimin Hou1, Jiaohua Qin1,*, Xuyu Xiang1, Yun Tan1, Neal N. Xiong2

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1877-1891, 2021, DOI:10.32604/cmc.2021.017481

    Abstract Medical image segmentation is an important application field of computer vision in medical image processing. Due to the close location and high similarity of different organs in medical images, the current segmentation algorithms have problems with mis-segmentation and poor edge segmentation. To address these challenges, we propose a medical image segmentation network (AF-Net) based on attention mechanism and feature fusion, which can effectively capture global information while focusing the network on the object area. In this approach, we add dual attention blocks (DA-block) to the backbone network, which comprises parallel channels and spatial attention branches, to adaptively calibrate and weigh… More >

Displaying 1-10 on page 1 of 10. Per Page  

Share Link