Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (128)
  • Open Access

    ARTICLE

    A TREE-TYPE CYLINDRICAL-SHAPED NANOPOROUS FILTERING MEMBRANE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-5, 2018, DOI:10.5098/hmt.10.16

    Abstract A tree-type cylindrical-shaped nanoporous filtering membrane is proposed. Across the thickness of this membrane are manufactured two kinds of pores i.e. one trunk pore and four uniform branch pores, these two kinds of pores have the same homogeneous surface property and are linked together, and they are uniformly distributed on the membrane surface; The branch pore is for filtration and its radius is on the 1nm or 10nm scales, while the trunk pore is for collecting the flow coming from its four branch pores and it is aimed for reducing the flow resistance and increasing… More >

  • Open Access

    ARTICLE

    TREE-TYPE NANOPOROUS FILTERING MEMBRANE WITH COMPLEX PORES

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-5, 2018, DOI:10.5098/hmt.11.32

    Abstract A tree-type nanoporous filtering membrane with complex pores is proposed. The membrane consists of three kinds of concentric cylindrical pores across the membrane thickness i.e. the four branch pores for filtration, the one flow-collecting pore and the one flow resistance-reducing pore. The ratio of the radius of the flow resistance-reducing pore to that of the filtration pore is optimized for yielding the highest flux of the membrane. The dimensionless lowest flow resistance of the membrane in the optimum condition was typically calculated for different filtration pore radii and different passing liquid-pore wall interactions. The capability More >

  • Open Access

    ARTICLE

    PERFORMANCE OF THE OPTIMIZED TREE-TYPE CYLINDRICALSHAPED NANOPOROUS FILTERING MEMBRANES WITH 9 OR 10 BRANCH PORES IN EACH PORE TREE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-5, 2018, DOI:10.5098/hmt.11.26

    Abstract The paper analytically studies the performance of the optimized tree-type cylindrical-shaped nanoporous filtering membranes with 9 or 10 branch pores in each pore tree. The optimum ratio of the radius of the trunk pore to the radius of its branch pore was found. The corresponding lowest flow resistances of the membranes were typically calculated respectively for weak, medium and strong liquid-pore wall interactions. For liquid-liquid separations, the optimum radii of the trunk pore in the membranes were calculated according to the weak liquid-pore wall interaction. The capability of the liquidliquid separation of the membranes was More >

  • Open Access

    ARTICLE

    AN OPTIMIZED TREE-TYPE CYLINDRICAL-SHAPED NANOPOROUS FILTERING MEMBRANE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-7, 2018, DOI:10.5098/hmt.11.25

    Abstract A tree-type cylindrical-shaped nanoporous filtering membrane is optimized with two levels of branches and a lot of branch pores. In this membrane, the branch pores are parallel with their trunk pore and their radius More >

  • Open Access

    ARTICLE

    A Novel Twist Deformation Model of Soft Tissue in Surgery Simulation

    Xiaorui Zhang1,2,3,*, Pengpai Wang1, Wei Sun2, Norman I. Badler3

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 297-319, 2018, DOI:10.3970/cmc.2018.01764

    Abstract Real-time performance and accuracy are two most challenging requirements in virtual surgery training. These difficulties limit the promotion of advanced models in virtual surgery, including many geometric and physical models. This paper proposes a physical model of virtual soft tissue, which is a twist model based on the Kriging interpolation and membrane analogy. The proposed model can quickly locate spatial position through Kriging interpolation method and accurately compute the force change on the soft tissue through membrane analogy method. The virtual surgery simulation system is built with a PHANTOM OMNI haptic interaction device to simulate More >

  • Open Access

    ARTICLE

    miR-1193 Suppresses the Proliferation and Invasion of Human T-Cell Leukemia Cells Through Directly Targeting the Transmembrane 9 Superfamily 3 (TM9SF3)

    Liyun Shen, Xingjun Du, Hongyan Ma, Shunxi Mei

    Oncology Research, Vol.25, No.9, pp. 1643-1651, 2017, DOI:10.3727/096504017X14908284471361

    Abstract miRNAs have been involved in various types of cancer, including T-cell leukemia. In this study, the role of miR-1193 in the proliferation and invasion of T-cell leukemia cells was explored. First, we found that miR-1193 was sharply downregulated in T-cell leukemia cells when compared with normal T cells. miR-1193 markedly decreased the proliferation and invasion in Jurkat human T-cell leukemia cells. Transmembrane 9 superfamily 3 (TM9SF3) was then predicted to be a potential target gene of miR-1193, the levels of which displayed a strongly negative correlation with miR-1193 levels in T-cell leukemia patients. We confirmed More >

  • Open Access

    ARTICLE

    Silencing Transmembrane Protein 45B (TNEM45B) Inhibits Proliferation, Invasion, and Tumorigenesis in Osteosarcoma Cells

    Yan Li1, Wei Guo1, Shen Liu, Bin Zhang, Bing-Bing Yu, Bo Yang, Shun-Li Kan, Shi-Qing Feng

    Oncology Research, Vol.25, No.6, pp. 1021-1026, 2017, DOI:10.3727/096504016X14821477992177

    Abstract Transmembrane protein 45B (TMEM45B) is a member of the TMEM family of proteins and has been reported to be expressed abnormally in different kinds of human tumors. However, the biological function of TMEM45B in osteosarcoma remains unclear. The objective of this study was to investigate the role of TMEM45B in regulating the biological behavior of osteosarcoma cells. Our results demonstrated that the expression of TMEM45B at both the protein and mRNA levels was dramatically upregulated in human osteosarcoma cell lines. Knockdown of TMEM45B significantly suppressed the proliferation, migration, and invasion of U2OS cells in vitro. More >

  • Open Access

    ARTICLE

    CKLF-Like MARVEL Transmembrane Domain-Containing Member 3 (CMTM3) Inhibits the Proliferation and Tumorigenisis in Hepatocellular Carcinoma Cells

    Wujun Li*, Shaobo Zhang

    Oncology Research, Vol.25, No.2, pp. 285-293, 2017, DOI:10.3727/096504016X14732523471442

    Abstract The CKLF-like MARVEL transmembrane domain-containing 3 (CMTM3), a member of the CMTM family, was found in several human tumors and plays an important role in the development and progression of tumors. However, the role of CMTM3 in hepatocellular carcinoma (HCC) remains largely unknown. Thus, in the present study, we explored its expression pattern in human HCC cell lines, as well as its functions in HCC cells. Our results demonstrated that the expression of CMTM3 is lowly expressed in HCC cell lines. In vitro, we found that overexpression of CMTM3 obviously inhibited the proliferation, invasion, and More >

  • Open Access

    ARTICLE

    INFLUENCE OF PORE WALL SURFACE PROPERTY ON FLUX OF CYLINDRICAL-SHAPED NANOPOROUS FILTERING MEMBRANE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-6, 2017, DOI:10.5098/hmt.9.26

    Abstract The influence of pore wall surface property on the flux of a novel cylindrical-shaped nanoporous filtering membrane is analytically studied by using the flow factor approach model for a nanoscale flow. Across the thickness of the membrane are manufactured two concentric cylindrical pores with different radii. The smaller nanoscale pore is for filtration, while the other larger pore is for reducing the flow resistance. It was found that when the larger pore wall surface is hydrophobic, the interaction between the filtered liquid and the smaller pore wall surface has a very significant effect on the More >

  • Open Access

    ARTICLE

    Membrane fluidity regulates high shear stress-induced FAK activation at different subcellular compartments

    FEI XIE1,2, BAOHONG ZHANG1,2, WENFENG XU1, XIAOLING LIAO1,*, QIUHONG HUANG1, BO LIU2,*

    BIOCELL, Vol.41, No.2-3, pp. 45-54, 2017, DOI:10.32604/biocell.2017.41.045

    Abstract Focal adhesion kinase (FAK) plays a vital role in mediating the adaptability of tumor cells under mechanical stimuli. Previous studies revealed that FAK can locate to different cell compartments, and its regulation is highly dependent on its subcellular localization. However, the local FAK activities and its regulation mechanism in different cell compartments of tumor cells in response to fluid shear stress are still unclear. In this study, 5 dyn/cm2 and 20 dyn/cm2 of shear stress was applied to HeLa cells for 30 min. The activities of FAK targeting different subcellular compartments (lipids rafts, non-rafts, focal adhesions… More >

Displaying 71-80 on page 8 of 128. Per Page