Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Fluid-Structure Interaction Human Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models Based on Patient-Tracking In Vivo MRI Data

    Dalin Tang1, Chun Yang2, Satya Atluri3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.3, pp. 67-68, 2011, DOI:10.3970/icces.2011.018.067

    Abstract Cardiovascular disease is the leading cause of death worldwide. Many victims of the disease died suddenly without prior symptoms. It is a great challenge for clinicians and researchers to develop screening techniques and assessment methodologies to identify those patients for early treatment and prevention of the fatal clinical event. Considerable effort has been devoted investigating mechanisms governing atherosclerotic plaque progression and rupture [Friedman, Bargeron, Deters, Hutchins and Mark (1987); Friedman and Giddens (2005); Giddens, Zarins, Glagov, S. (1993); Ku, Giddens, Zarins and Glagov (1985); Gibson et al. (1993); Liu and Tang (2010); Stone et al. (2003); Yang, Tang, Atluri et… More >

  • Open Access


    Patient-Specific Carotid Plaque Progression Simulation Using 3D Meshless Generalized Finite Difference Models with Fluid-Structure Interactions Based on Serial In Vivo MRI Data

    Chun Yang1,2, Dalin Tang2, Satya Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.1, pp. 53-78, 2011, DOI:10.3970/cmes.2011.072.053

    Abstract Previously, we introduced a computational procedure based on three-dimensional meshless generalized finite difference (MGFD) method and serial magnetic resonance imaging (MRI) data to quantify patient-specific carotid atherosclerotic plaque growth functions and simulate plaque progression. Structure-only models were used in our previous report. In this paper, fluid-stricture interaction (FSI) was added to improve on prediction accuracy. One participating patient was scanned three times (T1, T2, and T3, at intervals of about 18 months) to obtain plaque progression data. Blood flow was assumed to laminar, Newtonian, viscous and incompressible. The Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the governing… More >

Displaying 1-10 on page 1 of 2. Per Page  

Share Link