Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    OPTIMIZATION STUDIES OF TRANSPIRATION COOLING USING POROUS MEDIUM WITH GRADUALLY-CHANGED STRUCTURE

    Yu Chena , Shen Dua, Dong Lia, Yang Gaob, Ya-Ling Hea,*

    Frontiers in Heat and Mass Transfer, Vol.15, No.1, pp. 1-13, 2020, DOI:10.5098/hmt.15.19

    Abstract Non-uniform heating and vapor blockage deteriorate the effectiveness of transpiration cooling, and an optimization method by using porous media with a gradually-changed structure is proposed. The numerical tool based on a two-phase mixture model and local thermal non-equilibrium assumption considering variable properties of coolant is applied. Porous media with linearly-changed porosity or particle diameter is analyzed. The transient results presented that the structure of gradually-changed porosity (or particle diameter) with appropriate parameters can delay the heat transfer deterioration. And it is confirmed that the present theoretical model is an effective tool for optimization design of transpiration cooling system. More >

  • Open Access

    ARTICLE

    Short-Term Mindfulness Intervention on Adolescents’ Negative Emotion under Global Pandemic

    Yue Yuan1,*, Aibao Zhou1,*, Tinghao Tang1, Manying Kang2, Haiyan Zhao1, Zhi Wang3

    International Journal of Mental Health Promotion, Vol.25, No.4, pp. 563-577, 2023, DOI:10.32604/ijmhp.2023.022161

    Abstract Objective: In this research, we tried to explore how short-term mindfulness (STM) intervention affects adolescents’ anxiety, depression, and negative and positive emotion during the COVID-19 pandemic. Design: 10 classes were divided into experiment groups (5 classes; n = 238) and control (5 classes; n = 244) randomly. Hospital Anxiety and Depression Scale (HADS) and Positive and Negative Affect Schedule (PANAS) were used to measure participants’ dependent variables. In the experiment group, we conducted STM practice interventions every morning in their first class from March to November 2020. No interventions were conducted in the control group. Methods: Paired-sample t-tests were used to identify if a… More >

  • Open Access

    ARTICLE

    RBMDO Using Gaussian Mixture Model-Based Second-Order Mean-Value Saddlepoint Approximation

    Debiao Meng1,2,3, Shiyuan Yang1, Tao Lin4,5,*, Jiapeng Wang1, Hengfei Yang1, Zhiyuan Lv1

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 553-568, 2022, DOI:10.32604/cmes.2022.020756

    Abstract Actual engineering systems will be inevitably affected by uncertain factors. Thus, the Reliability-Based Multidisciplinary Design Optimization (RBMDO) has become a hotspot for recent research and application in complex engineering system design. The Second-Order/First-Order Mean-Value Saddlepoint Approximate (SOMVSA/FOMVSA) are two popular reliability analysis strategies that are widely used in RBMDO. However, the SOMVSA method can only be used efficiently when the distribution of input variables is Gaussian distribution, which significantly limits its application. In this study, the Gaussian Mixture Model-based Second-Order Mean-Value Saddlepoint Approximation (GMM-SOMVSA) is introduced to tackle above problem. It is integrated with the Collaborative Optimization (CO) method to… More >

  • Open Access

    ARTICLE

    Customized Share Level Monitoring System for Users in OSN-Third Party Applications

    T. Shanmuigapriya1,*, S. Swamynathan2, Thiruvaazhi Uloli3

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1327-1339, 2022, DOI:10.32604/csse.2022.024440

    Abstract Preserving privacy of the user is a very critical requirement to be met with all the international laws like GDPR, California privacy protection act and many other bills in place. On the other hand, Online Social Networks (OSN) has a wide spread recognition among the users, as a means of virtual communication. OSN may also acts as an identity provider for both internal and external applications. While it provides a simplified identification and authentication function to users across multiple applications, it also opens the users to a new spectrum of privacy threats. The privacy breaches costs to the users as… More >

  • Open Access

    ARTICLE

    Effective Frameworks Based on Infinite Mixture Model for Real-World Applications

    Norah Saleh Alghamdi1, Sami Bourouis2,*, Nizar Bouguila3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1139-1156, 2022, DOI:10.32604/cmc.2022.022959

    Abstract Interest in automated data classification and identification systems has increased over the past years in conjunction with the high demand for artificial intelligence and security applications. In particular, recognizing human activities with accurate results have become a topic of high interest. Although the current tools have reached remarkable successes, it is still a challenging problem due to various uncontrolled environments and conditions. In this paper two statistical frameworks based on nonparametric hierarchical Bayesian models and Gamma distribution are proposed to solve some real-world applications. In particular, two nonparametric hierarchical Bayesian models based on Dirichlet process and Pitman-Yor process are developed.… More >

  • Open Access

    ARTICLE

    Remote Sensing Image Retrieval Based on 3D-Local Ternary Pattern (LTP) Features and Non-subsampled Shearlet Transform (NSST) Domain Statistical Features

    Hilly Gohain Baruah*, Vijay Kumar Nath, Deepika Hazarika

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 137-164, 2022, DOI:10.32604/cmes.2022.018339

    Abstract With the increasing popularity of high-resolution remote sensing images, the remote sensing image retrieval (RSIR) has always been a topic of major issue. A combined, global non-subsampled shearlet transform (NSST)-domain statistical features (NSSTds) and local three dimensional local ternary pattern (3D-LTP) features, is proposed for high-resolution remote sensing images. We model the NSST image coefficients of detail subbands using 2-state laplacian mixture (LM) distribution and its three parameters are estimated using Expectation-Maximization (EM) algorithm. We also calculate the statistical parameters such as subband kurtosis and skewness from detail subbands along with mean and standard deviation calculated from approximation subband, and… More >

  • Open Access

    ARTICLE

    Massive MIMO Codebook Design Using Gaussian Mixture Model Based Clustering

    S. Markkandan1,*, S. Sivasubramanian2, Jaison Mulerikkal3, Nazeer Shaik4, Beulah Jackson5, Lakshmi Naryanan6

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 361-375, 2022, DOI:10.32604/iasc.2022.021779

    Abstract The codebook design is the most essential core technique in constrained feedback massive multi-input multi-output (MIMO) system communications. MIMO vectors have been generally isotropic or evenly distributed in traditional codebook designs. In this paper, Gaussian mixture model (GMM) based clustering codebook design is proposed, which is inspired by the strong classification and analytical abilities of clustering techniques. Huge quantities of channel state information (CSI) are initially saved as entry data of the clustering process. Further, split into N number of clusters based on the shortest distance. The centroids part of clustering has been utilized for constructing a codebook with statistic… More >

  • Open Access

    ARTICLE

    Deep Neural Network Driven Automated Underwater Object Detection

    Ajisha Mathias1, Samiappan Dhanalakshmi1,*, R. Kumar1, R. Narayanamoorthi2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5251-5267, 2022, DOI:10.32604/cmc.2022.021168

    Abstract Object recognition and computer vision techniques for automated object identification are attracting marine biologist's interest as a quicker and easier tool for estimating the fish abundance in marine environments. However, the biggest problem posed by unrestricted aquatic imaging is low luminance, turbidity, background ambiguity, and context camouflage, which make traditional approaches rely on their efficiency due to inaccurate detection or elevated false-positive rates. To address these challenges, we suggest a systemic approach to merge visual features and Gaussian mixture models with You Only Look Once (YOLOv3) deep network, a coherent strategy for recognizing fish in challenging underwater images. As an… More >

  • Open Access

    ARTICLE

    A Mixture Model Parameters Estimation Algorithm for Inter-Contact Times in Internet of Vehicles

    Cheng Gong1,2, Xinzhu Yang1, Wei Huangfu3,4,*, Qinghua Lu5

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2445-2457, 2021, DOI:10.32604/cmc.2021.016713

    Abstract Communication opportunities among vehicles are important for data transmission over the Internet of Vehicles (IoV). Mixture models are appropriate to describe complex spatial-temporal data. By calculating the expectation of hidden variables in vehicle communication, Expectation Maximization (EM) algorithm solves the maximum likelihood estimation of parameters, and then obtains the mixture model of vehicle communication opportunities. However, the EM algorithm requires multiple iterations and each iteration needs to process all the data. Thus its computational complexity is high. A parameter estimation algorithm with low computational complexity based on Bin Count (BC) and Differential Evolution (DE) (PEBCDE) is proposed. It overcomes the… More >

  • Open Access

    ARTICLE

    A Weighted Spatially Constrained Finite Mixture Model for Image Segmentation

    Mohammad Masroor Ahmed1,*, Saleh Al Shehri2, Jawad Usman Arshed3, Mahmood Ul Hassan4, Muzammil Hussain5, Mehtab Afzal6

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 171-185, 2021, DOI:10.32604/cmc.2021.014141

    Abstract Spatially Constrained Mixture Model (SCMM) is an image segmentation model that works over the framework of maximum a-posteriori and Markov Random Field (MAP-MRF). It developed its own maximization step to be used within this framework. This research has proposed an improvement in the SCMM’s maximization step for segmenting simulated brain Magnetic Resonance Images (MRIs). The improved model is named as the Weighted Spatially Constrained Finite Mixture Model (WSCFMM). To compare the performance of SCMM and WSCFMM, simulated T1-Weighted normal MRIs were segmented. A region of interest (ROI) was extracted from segmented images. The similarity level between the extracted ROI and… More >

Displaying 1-10 on page 1 of 17. Per Page  

Share Link