Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (234)
  • Open Access

    ARTICLE

    Modelling of Evaporative Cooling of Porous Medium Filled with Evaporative Liquid

    D.P.Mondal1, S.Das1, Anshul Badkul1, Nidhi Jha1

    CMC-Computers, Materials & Continua, Vol.13, No.2, pp. 115-134, 2009, DOI:10.3970/cmc.2009.013.115

    Abstract The cooling effect by evaporative liquid is modeled by considering that heat is transferred from the system to the surrounding due to evaporation of liquid through the pores present in the medium. The variation of cooling rate with cell size, volume fraction of pores and physical conditions has been analyzed. The model demonstrates that it increases with increase in thickness of the foam slab and with increase in velocity of air. It is also observed that cooling effect decreases with decrease in volume fraction of porosity and with increase in relative density, cell size, thermal More >

  • Open Access

    ARTICLE

    Segmentation and Simulation of Objects Represented in Images using Physical Principles

    Patrícia C.T. Gonçalves1,2, João Manuel R.S. Tavares1,2, R.M. Natal Jorge1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.1, pp. 45-56, 2008, DOI:10.3970/cmes.2008.032.045

    Abstract The main goals of the present work are to automatically extract the contour of an object and to simulate its deformation using a physical approach. In this work, to segment an object represented in an image, an initial contour is manually defined for it that will then automatically evolve until it reaches the border of the desired object. In this approach, the contour is modelled by a physical formulation using the finite element method, and its temporal evolution to the desired final contour is driven by internal and external forces. The internal forces are defined… More >

  • Open Access

    ARTICLE

    Modeling 3D Fruit Tissue Microstructure Using a Novel Ellipsoid Tessellation Algorithm

    H.K. Mebatsion1,2, P. Verboven1, P. T. Jancsók1, Q.T. Ho1, B.E. Verlinden3, B.M. Nicolaï1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.29, No.3, pp. 137-150, 2008, DOI:10.3970/cmes.2008.029.137

    Abstract Transport processes of gas and moisture are among the most important physiological processes in plant tissue. Microscale transport models based on Navier-Stokes equations provide insight into such processes at the microscopic scale. Due to microscopic complexity, numerical solutions based on the finite element or finite volume methods are mandatory. Therefore, a 3D geometric model of the tissue is essential. In this article, a novel algorithm for geometric reconstruction of 2D slices of synchrotron tomographic images is presented. The boundaries of 2D cells on individual slices were digitized to establish a set of boundary coordinates and… More >

  • Open Access

    ARTICLE

    HPC: Its application in Climate Modelling

    RaviS Nanjundiah1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 1-24, 2008, DOI:10.3970/cmes.2008.027.001

    Abstract In this paper, application of high performance computing to climate modelling with specific reference to global General Circulation Models (GCM) is discussed. Methods of parallelization of global atmospheric models based on their numerical schemes is presented. It is seen that there is an interesting co-evolution of computer architecture and the type of numerical schemes used in general circulation models. A detailed survey of the Indian HPC scenario for meteorological computing is presented. Innovative and pioneering aspects of Indian efforts are highlighted. More >

  • Open Access

    ARTICLE

    Computer Modelling of the Energy Distribution within Wood throughout Microwave Processing

    M. Daian1, A. Taube2, G. Torgovnikov3, G. Daian4, Y. Shramkov5

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 165-172, 2008, DOI:10.3970/cmc.2008.008.165

    Abstract Microwave wood modification and treatment technologies become more and more essential within the wood industry due to their technical and economical advantages. Microwave processing of wood involves many complicated physical phenomena and requires a very careful control of variables (such as intensity of microwave power, loading period, maximum temperature, etc.) in order to reduce structural deformations of the processed wood. To optimise and minimise the project design engineers' work, modelling and simulation of the microwave energy-wood interaction represents an indispensable tool.
    This research work has been undertaken with the aim to design and optimise microwave… More >

  • Open Access

    ARTICLE

    Modelling a Plunging Breaking Solitary Wave with Eddy-Viscosity Turbulent SPH Models

    R. Issa1, D. Violeau1

    CMC-Computers, Materials & Continua, Vol.8, No.3, pp. 151-164, 2008, DOI:10.3970/cmc.2008.008.151

    Abstract Breaking waves can run up at the shoreline, inundating coastal regions and causing large property damage and loss of life. In order to proceed to the design of sea defence structures and estimate the possible damage resulting from sea submersion due to a tsunami for instance, it is thus crucial to understand these phenomena. However, due to the mathematical difficulties caused by the complexities of the fluid motion associated with breaking wave, a fully theoretical approach is not possible. Thus most of the investigations regarding breaking waves are experimental and numerical. Some methods were recently… More >

  • Open Access

    ABSTRACT

    Modelling of Mesomechanics of Portevin-Le Chatelier Effect by Relaxation Element Method

    Ye.Ye. Deryugin1, G.V. Lasko2,1, S. Schmauder2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.4, pp. 243-250, 2007, DOI:10.3970/icces.2007.003.243

    Abstract The results of 2D simulation of strain localizations on the meso-level in the surface layer of a polycrystal with a highly pronounced Portevin Le Chatelier (PLC) effect are presented. For such a purpose the Relaxation Element Method (REM) has been used. A fundamental property of solid "plastic deformation is accompanied by stress relaxation in local volumes of a loaded solid" lies on the basis of this method. The elaborated REM model operates on the principle of cellular automata. The results are in good qualitative agreement with known experimental data. More >

  • Open Access

    ABSTRACT

    Review of existing numerical methods and validation procedure available for bird strike modelling

    M-A Lavoie1, A. Gakwaya1, M. Nejad Ensan2, D.G. Zimcik2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 111-118, 2007, DOI:10.3970/icces.2007.002.111

    Abstract This paper reviews numerical methods that are currently available to simulate bird strike as well as the theory of the event. It also summarizes important parameters and provides guidelines as to how to set up the analysis and how to evaluate a model. The information provided is based on physical properties and available results regarding a bird and its behaviour upon impact. The simulations have been performed with LS-DYNA 970 but can be done in similar dynamic finite elements analysis codes. More >

  • Open Access

    ARTICLE

    On the Modelling of Rate-Dependent Domain Switching in Piezoelectric Materials under Superimposed Stresses

    A. Arockiarajan1, A. Menzel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.1, pp. 55-72, 2007, DOI:10.3970/cmes.2007.020.055

    Abstract To study rate-dependent properties of piezoelectric materials a micro-mechanically motivated model is applied in this work. The developed framework is embedded into a coupled three-dimensional finite element setting, whereby each element is assumed to represent one grain and, moreover, possesses a random initialisation of the underlying polarisation direction. Furthermore, an energy-based criterion is used for the initiation of the onset of domain switching and the subsequent propagation of domain wall motion during the switching process is modelled via a linear kinetics theory. The interaction between individual grains is thereby incorporated by means of a probabilistic More >

  • Open Access

    ARTICLE

    On the Modelling of Rate-Dependent Domain Switching in Piezoelectric Materials under Superimposed Stresses

    A. Arockiarajan1, A. Menzel2

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.2, pp. 163-178, 2007, DOI:10.3970/cmes.2007.019.163

    Abstract To study rate-dependent properties of piezoelectric materials a micro-mechanically motivated model is applied in this work. The developed framework is embedded into a coupled three-dimensional finite element setting, whereby each element is assumed to represent one grain and, moreover, possesses a random initialisation of the underlying polarisation direction. Furthermore, an energy-based criterion is used for the initiation of the onset of domain switching and the subsequent propagation of domain wall motion during the switching process is modelled via a linear kinetics theory. The interaction between individual grains is thereby incorporated by means of a probabilistic More >

Displaying 211-220 on page 22 of 234. Per Page