Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (229)
  • Open Access

    ARTICLE

    Modelling of Woven Fabrics with the Discrete Element Method

    D. Ballhause1, M. König1, B. Kröplin1

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 21-30, 2006, DOI:10.3970/cmc.2006.004.021

    Abstract The mechanical behaviour of woven fabrics is dominated by the kinematics of the constituents on the microscopic scale. Their macroscopic response usually shows non-linearities which are due to the mobility of the interlaced yarns. The major deformation mechanisms of fabrics, i.e. the crimp interchange in case of biaxial tension and the trellising motion of the yarns in case of shear, reflect the dependency of the macroscopic material behaviour on the microstructural deformation mechanisms.
    We present a novel modelling approach for woven fabrics which is capable to represent directly and locally the microstructure and its kinematics… More >

  • Open Access

    ARTICLE

    Multi-Scale Modelling and Simulation of Textile Reinforced Materials

    G. Haasemann1, M. Kästner1 and V. Ulbricht1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 131-146, 2006, DOI:10.3970/cmc.2006.003.131

    Abstract Novel textile reinforced composites provide an extremely high adaptability and allow for the development of materials whose features can be adjusted precisely to certain applications. A successful structural and material design process requires an integrated simulation of the material behavior, the estimation of the effective properties which need to be assigned to the macroscopic model and the resulting features of the component. In this context two efficient modelling strategies - the Binary Model (Carter, Cox, and Fleck (1994)) and the Extended Finite Element Method (X-FEM) (Moës, Cloirec, Cartraud, and Remacle (2003)) - are used to… More >

  • Open Access

    ARTICLE

    Numerical Modelling of Damage Response of Layered Composite Plates

    I. Smojver1, J. Sorić2

    CMC-Computers, Materials & Continua, Vol.3, No.1, pp. 13-24, 2006, DOI:10.3970/cmc.2007.003.013

    Abstract The paper addresses the problem of impact on layered fibre composites. The behaviour of composite laminates under impact loading is dependent not only on the velocity but also on the mass and geometry of the impactor. Using micromechanical Mori-Tanaka approach, mechanical properties of the laminate have been calculated utilizing the material constants of the fibre and matrix. General purpose FEM software ABAQUS has been modified by means of user written subroutines for modelling of composite laminate and rigid impactor. The kinematics of the impact has been simulated using transient dynamic analysis. Employing user defined multi More >

  • Open Access

    ARTICLE

    On the Indentation of a Chemically-treated Polymeric Membrane

    A. P. S. Selvadurai1, Q. Yu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.1, pp. 85-110, 2005, DOI:10.3970/cmes.2005.009.085

    Abstract A characteristic feature of a polymeric material such as PVC is its hyperelasticity or the ability to experience large strains prior to failure. The exposure of PVC to chemicals such as acetone and ethanol results in embrittlement or the loss of the hyperelasticity property. In this paper, we examine the mechanical behaviour of a PVC membrane that has been exposed to ethanol. Due to leaching of the plasticizer, the constitutive response of the PVC changes from a hyperelastic material to a hardened material that displays dominant yield behaviour and particularly one that is capable of… More >

  • Open Access

    ARTICLE

    Bond Graph Modelling and Simulation of Static Recrystallization Kinetics in Multipass Hot Steel Rolling

    S.K. Pal1, D.A. Linkens2

    CMC-Computers, Materials & Continua, Vol.2, No.2, pp. 113-118, 2005, DOI:10.3970/cmc.2005.002.113

    Abstract In hot rolling, the final thickness of the strip is achieved through plastic deformation of the original stock by a series of counter-rotating rollers. In this work, static recrystallization kinetics in between two stages of steel rolling has been modelled, and simulation studies have also been performed to find out the effect of entry temperature on the recrystallization kinetics. A viable bond graph model has been developed to study the kinetics of the process. Low-carbon steel has been considered for this purpose. More >

  • Open Access

    ARTICLE

    Computational Modelling of Isotropic Multiplicative Growth

    G. Himpel, E. Kuhl, A. Menzel, P. Steinmann1

    CMES-Computer Modeling in Engineering & Sciences, Vol.8, No.2, pp. 119-134, 2005, DOI:10.3970/cmes.2005.008.119

    Abstract The changing mass of biomaterials can either be modelled at the constitutive level or at the kinematic level. This contribution attends on the description of growth at the kinematic level. The deformation gradient will be multiplicatively split into a growth part and an elastic part. Hence, in addition to the material and the spatial configuration, we consider an intermediate configuration or grown configuration without any elastic deformations. With such an ansatz at hand, contrary to the modelling of mass changes at the constitutive level, both a change in density and a change in volume can More >

  • Open Access

    ARTICLE

    Bone and Joints Modelling with Individualized Geometric and Mechanical Properties Derived from Medical Images

    M.C. Ho Ba Tho1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.3&4, pp. 489-496, 2003, DOI:10.3970/cmes.2003.004.489

    Abstract The objective of the paper is to address the methodology developed to model bone and joints with individualised geometric and material properties from medical image data. An atlas of mechanical properties of human bone has been investigated demonstrating individual differences. From these data, predictive relationships have been established between mechanical properties and quantitative data derived from measurements on medical images. Subsequently, geometric and numerical models of bones with individualised geometrical and mechanical properties have been developed from the same source of image data. The advantages of this modelling technique are its ability to study the More >

  • Open Access

    ARTICLE

    Modelling and Validation of Contribions to Stress in the Shallow Trench Isolation Process Sequence

    K. Garikipati1, V.S. Rao2, M.Y. Hao3, E. Ibok4, I. de Wolf5, R. W. Dutton6

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 65-84, 2000, DOI:10.3970/cmes.2000.001.065

    Abstract This work is based upon a careful rendering of mechanics and mathematics to describe the phenomena that influence the stress engendered by the Shallow Trench Isolation process. The diffusion-reaction problem is posed in terms of fundamental mass balance laws. Finite strain kinematics is invoked to model the large expansion of SiO2, dielectrics are modelled as viscoelastic solids and annealing-induced density relaxation of SiO2 is incorporated as a history-dependent process. A levelset framework is used to describe the moving Si/SiO2 interface. Sophisticated finite element methods are employed to solve the mathematical equations posed for each phenomenon. These include More >

  • Open Access

    ARTICLE

    Accurate Modelling and Simulation of Thermomechanical Microsystem Dynamics

    S. Taschini1, J. Müller2, A. Greiner2, M. Emmenegger1, H. Baltes1, J.G. Korvink2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 31-44, 2000, DOI:10.3970/cmes.2000.001.031

    Abstract We present three techniques to accurately model the thermomechanical response of microsystem components: a new, accurate and stable Kirchhoff-Love multi-layered plate model implemented as an Argyris finite element, a model for the amplitude fluctuations of vibrational modes in micro-mechanical structures within a gaseous environment, and the consistent refinement of a finite element mesh in order to maximize the computational accuracy for a given mesh size. We have implemented these techniques in our in-house MEMS finite element program and accompanying Monte Carlo simulator. We demonstrate our approach to dynamic modeling by computing the thermomechanical response of More >

Displaying 221-230 on page 23 of 229. Per Page