Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (140)
  • Open Access

    ARTICLE

    How flexible is α-actinin's rod domain?

    Muhammad H. Zaman1, Mohammad R. Kaazempur-Mofrad2

    Molecular & Cellular Biomechanics, Vol.1, No.4, pp. 291-302, 2004, DOI:10.3970/mcb.2004.001.291

    Abstract α-actinin, an actin binding protein, plays a key role in cell migration, cross-links actin filaments in the Z-disk, and is a major component of contractile muscle apparatus. The flexibility of the molecule is critical to its function. The flexibility of various regions of the molecule, including the linker connecting central subunits is studied using constant force steered molecular dynamics simulations. The linker, whose structure has been a subject of debate, is predicted to be semi-flexible. The flexibility of the linker is compared to all possible segments of equal length throughout the molecule. The stretching profile More >

  • Open Access

    ARTICLE

    Forced Dissociation of the Strand Dimer Interface between C-Cadherin Ectodomains

    M.V. Bayas1,1, K.Schulten2,2, D. Leckb,3,3

    Molecular & Cellular Biomechanics, Vol.1, No.2, pp. 101-112, 2004, DOI:10.3970/mcb.2004.001.101

    Abstract The force-induced dissociation of the strand dimer interface in C-cadherin has been studied using steered molecular dynamics simulations. The dissociation occurred, without domain unraveling, after the extraction of the conserved trypthophans (Trp2) from their respective hydrophobic pockets. The simulations revealed two stable positions for the Trp2 side chain inside the pocket. The most internal stable position involved a hydrogen bond between the ring Ne of Trp2 and the backbone carbonyl of Glu90. In the second stable position, the aromatic ring is located at the pocket entrance. After extracting the two tryptophans from their pockets, the More >

  • Open Access

    ARTICLE

    Crystalline Plasticity on Copper (001), (110), and (111) Surfaces during Nanoindentation

    Haiyi Liang1, C.H. Woo1,2, Hanchen Huang3, A.H.W. Ngan4, T.X. Yu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.1, pp. 105-114, 2004, DOI:10.3970/cmes.2004.006.105

    Abstract Molecular dynamics (MD) simulations are performed to study crystalline plasticity during nano-indentation by comparing the elastic-plastic response of three copper substrates with surfaces (001), (110), and (111) crystallographic planes. The effects of elastic anisotropy and crystallographic symmetry on the reduced modulus, dislocation nucleation, and subsequent microstructure evolution, are investigated. The reduced modulus of (111) surface is found to be the largest, while that of (001) surface is the smallest. Elastic stress distribution calculated from finite element method (FEM) is qualitatively consistent with the MD simulation results. Significant differences exist in the deformation behavior in the More >

  • Open Access

    ARTICLE

    Integrated Green's Function Molecular Dynamics Method for Multiscale Modeling of Nanostructures: Application to Au Nanoisland in Cu1

    V.K. Tewary2, D.T. Read2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.4, pp. 359-372, 2004, DOI:10.3970/cmes.2004.006.359

    Abstract An integrated Green's function and molecular dynamics technique is developed for multiscale modeling of a nanostructure in a semi-infinite crystal lattice. The equilibrium configuration of the atoms inside and around the nanostructure is calculated by using molecular dynamics that accounts for nonlinear interatomic forces. The molecular dynamics is coupled with the lattice statics Green's function for a large crystallite containing a million or more atoms. This gives a fully atomistic description of a nanostructure in a large crystallite that includes the effect of nonlinear forces. The lattice statics Green's function is then related to the… More >

  • Open Access

    ARTICLE

    Nucleation and Propagation of Deformation Twin in Polysynthetically Twinned TiAl

    L. G. Zhou1, L. M. Hsiung2, Hanchen Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 245-252, 2004, DOI:10.3970/cmes.2004.006.245

    Abstract Using molecular dynamics simulations, we study the deformation of polysynthetically twinned (PST) TiAl at room temperature. The simulation cell is pre-strained and thermodynamically relaxed to zero stress, so that no dislocations pre-exist in γ−α2 interfaces. A uniaxial compression is then applied along one 1/6<112] direction. Our results show that interfacial dislocation pairs nucleate at the γ−α2 interface under the compression. The glide and agglomeration of these dislocations lead to the nucleation of deformation twins from the interface. Based on our studies, twins may nucleate without pre-existing interfacial dislocations. Further we have monitored the propagation of the More >

  • Open Access

    ARTICLE

    Molecular-Dynamics Analysis of Grain-Boundary Grooving in Interconnect Films with Underlayers

    T. Iwasaki1 and H. Miura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 551-558, 2003, DOI:10.3970/cmes.2003.004.551

    Abstract We have developed a molecular-dynamics technique for investigating migration-induced failures in interconnect films for ULSIs. This technique was used to simulate grain-boundary grooving in Al and Cu films. The simulations showed that the grain-boundary grooves are formed by atomic diffusion at the grain boundary. To clarify what kind of underlay material is effective in suppressing this diffusion, we calculated the dependence of groove depth on the kind of underlay material. The calculation showed that the groove depth of the Al film decreases in the order: Al/Ta, Al/W, and Al/TiN while that of the Cu film More >

  • Open Access

    ARTICLE

    Atomic Modeling of Carbon-Based Nanostructures as a Tool for Developing New Materials and Technologies

    D.W. Brenner, O.A. Shenderova, D.A. Areshkin, J.D. Schall1, S.-J. V. Frankland2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.5, pp. 643-674, 2002, DOI:10.3970/cmes.2002.003.643

    Abstract The derivation of a bond-order potential energy function and a self-consistent tight-binding scheme is presented, followed by a survey of the application of these methods to calculating properties of carbon nanostructures. The modeling studies discussed include properties of functionalized and kinked carbon nanotubes, Raman shifts for hydrogen stored in nanotubes, nanotubes in a composite, properties of nanotubes in applied potential (electrical) fields, and structures and properties of nanocones, nanodiamond clusters and rods, and hybrid diamond-nanotube structures. More >

  • Open Access

    ARTICLE

    Molecular Dynamics Study of Temperature Dependent Plastic Collapse of Carbon Nanotubes under Axial Compression

    Chengyu Wei1, 2, Deepak Srivastava 2, Kyeongjae Cho1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.2, pp. 255-262, 2002, DOI:10.3970/cmes.2002.003.255

    Abstract The temperature dependence of the plastic collapse of single-wall carbon nanotubes under axial compression has been studied with classical molecular dynamics simulations using Tersoff-Brenner potential for C-C interactions. At zero temperature, an (8,0) single-wall carbon nanotube under axial compression collapses by forming fins-like structure which remains within the elastic limit of the system, in agreement of previous molecular dynamics study. At finite temperatures, however, we find that temperature dependent fluctuations can activate the formation of sp3 bonds, in agreement with a recently proposed plastic collapse mechanism of the same nanotube with a generalized tight-binding molecular More >

  • Open Access

    ARTICLE

    Dislocation Nucleation and Propagation During Thin Film Deposition Under Tension

    W. C. Liu, S. Q. Shi, C. H. Woo, Hanchen Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.2, pp. 213-218, 2002, DOI:10.3970/cmes.2002.003.213

    Abstract Using molecular dynamics method, we study the nucleation of dislocations and their subsequent propagation during the deposition of tungsten thin films under tension. Aiming to reveal the generic mechanisms of dislocation nucleation during the deposition of polycrystalline thin films, the case of tungsten on a substrate of the same material is considered. The substrate is under uniaxial tension along the [111] direction, with the thermodynamically favored (01ˉˉ1) surface being horizontal. The simulation results indicate that the nucleation starts with a surface step, where a surface atom is pressed into the film along the [111ˉˉ] More >

  • Open Access

    ARTICLE

    Molecular Dynamics Simulation of Crack Propagation in Polycrystalline Material

    K. Nishimura1, N. Miyazaki2

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.2, pp. 143-154, 2001, DOI:10.3970/cmes.2001.002.143

    Abstract In this paper, we present a classical molecular dynamics algorithm and its implementation on Cray C90 and Fujitsu VPP700. The characters of this algorithm consist in a grid based on the block division of the atomic system and a neighbor list based on the use of a short range potential. The computer program is used for large scale simulations on a Cray C90 and a 32-node VPP700, and measurements of computational performance are reported. Then, we examine the interaction between a crack propagating and a tilt grain boundary under uniaxial tension using this computer program.… More >

Displaying 131-140 on page 14 of 140. Per Page