Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (324)
  • Open Access

    ARTICLE

    Field Load Test Based SHM System Safety Standard Determination for Rigid Frame Bridge

    Xilong Zheng*, Qiong Wang, Di Guan

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 361-376, 2024, DOI:10.32604/sdhm.2024.048473 - 15 May 2024

    Abstract The deteriorated continuous rigid frame bridge is strengthened by external prestressing. Static loading tests were conducted before and after the bridge rehabilitation to verify the effectiveness of the rehabilitation process. The stiffness of the repaired bridge is improved, and the maximum deflection of the load test is reduced from 37.9 to 27.6 mm. A bridge health monitoring system is installed after the bridge is reinforced. To achieve an easy assessment of the bridge’s safety status by directly using transferred data, a real-time safety warning system is created based on a five-level safety standard. The threshold More >

  • Open Access

    REVIEW

    A Review of NILM Applications with Machine Learning Approaches

    Maheesha Dhashantha Silva*, Qi Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2971-2989, 2024, DOI:10.32604/cmc.2024.051289 - 15 May 2024

    Abstract In recent years, Non-Intrusive Load Monitoring (NILM) has become an emerging approach that provides affordable energy management solutions using aggregated load obtained from a single smart meter in the power grid. Furthermore, by integrating Machine Learning (ML), NILM can efficiently use electrical energy and offer less of a burden for the energy monitoring process. However, conducted research works have limitations for real-time implementation due to the practical issues. This paper aims to identify the contribution of ML approaches to developing a reliable Energy Management (EM) solution with NILM. Firstly, phases of the NILM are discussed,… More >

  • Open Access

    ARTICLE

    Development of Spectral Features for Monitoring Rice Bacterial Leaf Blight Disease Using Broad-Band Remote Sensing Systems

    Jingcheng Zhang1, Xingjian Zhou1, Dong Shen1, Qimeng Yu1, Lin Yuan2,*, Yingying Dong3

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 745-762, 2024, DOI:10.32604/phyton.2024.049734 - 29 April 2024

    Abstract As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv. oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result of the disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remote sensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutions offer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapid dispersal under suitable conditions, making it difficult to track the disease at… More >

  • Open Access

    ARTICLE

    U-Net Inspired Deep Neural Network-Based Smoke Plume Detection in Satellite Images

    Ananthakrishnan Balasundaram1,2, Ayesha Shaik1,2,*, Japmann Kaur Banga2, Aman Kumar Singh2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 779-799, 2024, DOI:10.32604/cmc.2024.048362 - 25 April 2024

    Abstract Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have been identified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions is essential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcing emission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrial smoke plumes using freely accessible geo-satellite imagery. The existing system has so many lagging factors such as limitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timely response… More >

  • Open Access

    ARTICLE

    Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners: A Recommendation System

    Ameni Ellouze1, Nesrine Kadri2, Alaa Alaerjan3,*, Mohamed Ksantini1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 351-372, 2024, DOI:10.32604/cmc.2024.048061 - 25 April 2024

    Abstract Recognizing human activity (HAR) from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases. Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not. Typically, smartphones and their associated sensing devices operate in distributed and unstable environments. Therefore, collecting their data and extracting useful information is a significant challenge. In this context, the aim of this paper is twofold: The first is to analyze human behavior based on the recognition of physical activities. Using the… More >

  • Open Access

    ARTICLE

    Application of the CatBoost Model for Stirred Reactor State Monitoring Based on Vibration Signals

    Xukai Ren1,2,*, Huanwei Yu2, Xianfeng Chen2, Yantong Tang2, Guobiao Wang1,*, Xiyong Du2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 647-663, 2024, DOI:10.32604/cmes.2024.048782 - 16 April 2024

    Abstract Stirred reactors are key equipment in production, and unpredictable failures will result in significant economic losses and safety issues. Therefore, it is necessary to monitor its health state. To achieve this goal, in this study, five states of the stirred reactor were firstly preset: normal, shaft bending, blade eccentricity, bearing wear, and bolt looseness. Vibration signals along x, y and z axes were collected and analyzed in both the time domain and frequency domain. Secondly, 93 statistical features were extracted and evaluated by ReliefF, Maximal Information Coefficient (MIC) and XGBoost. The above evaluation results were More >

  • Open Access

    ARTICLE

    Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features

    Asifa Mehmood Qureshi1, Naif Al Mudawi2, Mohammed Alonazi3, Samia Allaoua Chelloug4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3683-3701, 2024, DOI:10.32604/cmc.2024.043611 - 26 March 2024

    Abstract Road traffic monitoring is an imperative topic widely discussed among researchers. Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides. However, aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area. To this end, different models have shown the ability to recognize and track vehicles. However, these methods are not mature enough to produce accurate results in complex road scenes. Therefore, this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with… More >

  • Open Access

    ARTICLE

    A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals

    Shuai Chen1, Yinwei Ma2, Zhongshu Wang2, Zongmei Xu3, Song Zhang1, Jianle Li1, Hao Xu1, Zhanjun Wu1,*

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 125-141, 2024, DOI:10.32604/sdhm.2024.042594 - 22 March 2024

    Abstract The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life. To this end, distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages, such as lightweight and ease of embedding. However, identifying the precise location of damage from the optical fiber signals remains a critical challenge. In this paper, a novel approach which namely Modified Sliding Window Principal Component Analysis (MSWPCA) was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors. The proposed method More > Graphic Abstract

    A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals

  • Open Access

    ARTICLE

    Security Monitoring and Management for the Network Services in the Orchestration of SDN-NFV Environment Using Machine Learning Techniques

    Nasser Alshammari1, Shumaila Shahzadi2, Saad Awadh Alanazi1,*, Shahid Naseem3, Muhammad Anwar3, Madallah Alruwaili4, Muhammad Rizwan Abid5, Omar Alruwaili4, Ahmed Alsayat1, Fahad Ahmad6,7

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 363-394, 2024, DOI:10.32604/csse.2023.040721 - 19 March 2024

    Abstract Software Defined Network (SDN) and Network Function Virtualization (NFV) technology promote several benefits to network operators, including reduced maintenance costs, increased network operational performance, simplified network lifecycle, and policies management. Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration (NFV MANO), and malicious attacks in different scenarios disrupt the NFV Orchestrator (NFVO) and Virtualized Infrastructure Manager (VIM) lifecycle management related to network services or individual Virtualized Network Function (VNF). This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and… More >

  • Open Access

    ARTICLE

    Fault Monitoring Strategy for PV System Based on I-V Feature Library

    Huaxing Zhao1, Yanbo Che1,*, Gang Wen2, Yijing Chen3

    Energy Engineering, Vol.121, No.3, pp. 643-660, 2024, DOI:10.32604/ee.2023.045204 - 27 February 2024

    Abstract Long-term use in challenging natural conditions is possible for photovoltaic modules, which are extremely prone to failure. Failure to diagnose and address faults in Photovoltaic (PV) power systems in a timely manner can cause permanent damage to PV modules and, in more serious cases, fires. Therefore, research into photovoltaic module defect detection techniques is crucial for the growth of the photovoltaic sector as well as for maintaining national economic prosperity and ensuring public safety. Considering the drawbacks of the current real-time and historical data-based methods for monitoring distributed PV systems, this paper proposes a method… More >

Displaying 21-30 on page 3 of 324. Per Page