Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (327)
  • Open Access

    ARTICLE

    Sensitivity of Eigen Value to Damage and Its Identification

    B.K.Raghuprasad1, N.Lakshmanan2, N.Gopalakrishnan2, K.Muthumani2

    Structural Durability & Health Monitoring, Vol.4, No.3, pp. 117-144, 2008, DOI:10.3970/sdhm.2008.004.117

    Abstract The reduction in natural frequencies, however small, of a civil engineering structure, is the first and the easiest method of estimating its impending damage. As a first level screening for health-monitoring, information on the frequency reduction of a few fundamental modes can be used to estimate the positions and the magnitude of damage in a smeared fashion. The paper presents the Eigen value sensitivity equations, derived from first-order perturbation technique, for typical infra-structural systems like a simply supported bridge girder, modelled as a beam, an end-bearing pile, modelled as an axial rod and a simply… More >

  • Open Access

    ABSTRACT

    Unsupervised Support Vector Machine Based Principal Component Analysis for Structural Health Monitoring

    Chang Kook Oh1, Hoon Sohn1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.3, pp. 91-100, 2008, DOI:10.3970/icces.2008.008.091

    Abstract Structural Health Monitoring (SHM) is concerned with identifying damage based on measurements obtained from structures being monitored. For the civil structures exposed to time-varying environmental and operational conditions, it is inevitable that environmental and operational variability produces an adverse effect on the dynamic behaviors of the structures. Since the signals are measured under the influence of these varying conditions, normalizing the data to distinguish the effects of damage from those caused by the environmental and operational variations is important in order to achieve successful structural health monitoring goals. In this paper, kernel principal component analysis More >

  • Open Access

    ARTICLE

    Estimation of Deformed Shapes of Beam Structures using 3D Coordinate Information from Terrestrial Laser Scanning

    H.M. Lee1, H.S. Park1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.29, No.1, pp. 29-44, 2008, DOI:10.3970/cmes.2008.029.029

    Abstract This paper presents a computational model to estimate deformed shapes of beam structures using 3D coordinate information from terrestrial laser scanning (TLS). The model is composed of five components: 1) formulation of polynomial shape function, 2) application of boundary condition, 3) inducement of compatibility condition, 4) application of the least square method and 5) evaluation of error vector and determination of reasonable polynomial shape function. In the proposed model, the optimal degree of polynomial function is selected based on the complexity of beam structures, instead of using a specific degree of polynomial function. The chosen More >

  • Open Access

    ARTICLE

    Electromechanical Admittance -- Based Damage Identification Using Box-Behnken Design of Experiments

    C.P. Providakis1, M.E. Voutetaki

    Structural Durability & Health Monitoring, Vol.3, No.4, pp. 211-228, 2007, DOI:10.3970/sdhm.2007.003.211

    Abstract Piezoceramic transducers have emerged as new tools for the health monitoring of large-scale structures due to their advantages of active sensing, low cost, quick response, availability in different shapes, and simplicity for implementations. In the present paper, a statistical metamodeling utilization of electro-mechanical (E/M) admittance approach by applying piezoelectric materials to the damage identification is investigated. A response surface metamodel is constructed by empirically fitting a model to a set of design points chosen using a Box-Behnken design of experiment (simulation) technique. This empirical fit allows polynomial models to be produced for relating damage parameter More >

  • Open Access

    ARTICLE

    An Investigation into Active Strain Transfer Analysis in a Piezoceramic Sensor System for Structural Health Monitoring Using the Dual Boundary Element Method

    S.P.L. Leme1, M.H. Aliabadi2, L.M. Bezerra1, P.W. Partridge1

    Structural Durability & Health Monitoring, Vol.3, No.3, pp. 121-132, 2007, DOI:10.3970/sdhm.2007.003.121

    Abstract The coupled electromechanical behaviour of a thin piezoceramic sensor bonded to a stiffened panel subjected to membrane mechanical loadings is examined. The sensor is characterised by an electrostatic line model bonded to a damaged panel modelled by the dual boundary element method. Numerical results obtained demonstrate that the proposed method is capable of modelling changes in the signal output due to presence of cracks. Also presented is a numerical model for detecting fatigue crack growth in a stiffened panel using piezoceramic sensors. More >

  • Open Access

    ARTICLE

    Passive Electric Potential CT Method Using Piezoelectric Material for Identification of Plural Cracks

    Daiki Shiozawa1, Shiro Kubo2, Takahide Sakagami2, Masaaki Takagi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.1, pp. 27-36, 2006, DOI:10.3970/cmes.2006.011.027

    Abstract The passive electric potential CT (computed tomography) method using piezoelectric film was applied to the identification of plural through cracks. The use of piezoelectric material made it possible to obtain electric potential field without applying electric current. For identification of cracks an inverse analysis scheme based on the least residual method was applied, in which square sum of residuals is evaluated between the measured electric potential distributions and those computed by using the finite element method. Akaike information criterion (AIC) was used to estimate the number of cracks. Numerical simulations were carried out on the More >

  • Open Access

    ARTICLE

    A Hybrid FEM/BEM Approach for Designing an Aircraft Engine Structural Health Monitoring

    S.C. Forth1, A. Staroselsky2

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.3, pp. 287-298, 2005, DOI:10.3970/cmes.2005.009.287

    Abstract A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating, and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack and external surface. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus, when More >

Displaying 321-330 on page 33 of 327. Per Page