Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (153)
  • Open Access

    ARTICLE

    The Numerical Simulation of Nanofluid Flow in Complex Channels with Flexible Wall

    Amal A. Harbood*, Hameed K. Hamzah, Hatem H. Obeid

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 293-315, 2023, DOI:10.32604/fhmt.2023.01518

    Abstract The current work seeks to examine numerical heat transfer by using a complicated channel with a trapezoid shape hanging in the channel. This channel demonstrates two-dimensional laminar flow, forced convective flow, and incompressible flow. To explore the behavior of heat transfer in complex channels, several parameters, such as the constant Prandtl number (Pr = 6.9), volume fraction (ϕ) equal to (0.02 to 0.04), Cauchy number (Ca) equal to (10−4 to 10−8), and Reynolds number equal to (60 to 160) were utilized. At the complex channel, different elastic walls are used in different locations, with case A being devoid of an… More >

  • Open Access

    ARTICLE

    Numerical Examination of Free Convection Flow of Casson Ternary Hybrid Nanofluid across Magnetized Stretching Sheet Impacted by Newtonian Heating

    Mohammed Z. Swalmeh1,*, Firas A. Alwawi2, A. A. Altawallbeh3, Wejdan Mesa’adeen4, Feras M. Al Faqih4, Ahmad M. Awajan4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 505-522, 2023, DOI:10.32604/fhmt.2023.044300

    Abstract In current study, the influence of magnetic field (MHD) on heat transfer of natural convection boundary layer flow in Casson ternary hybrid nanofluid past a stretching sheet is studied using numerical simulation. The Newtonian heating boundary conditions that depend on the temperature and velocity terms are taken into this investigation. The particular dimensional governing equations, for the studied problem, are converted to the system of partial differential equations utilizing adequate similarity transformation. Consequently, the system of equations is numerically solved using well-known Kellar box numerical techniques. The obtained numerical results are in excellent approval with previous literature results. The existence… More >

  • Open Access

    ARTICLE

    THE EFFECT OF MELTING ON MIXED CONVECTION HEAT AND MASS TRANSFER IN NON-NEWTONIAN NANOFLUID SATURATED IN POROUS MEDIUM

    R.R. Kairia, Ch. RamReddyb,*

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-7, 2015, DOI:10.5098/hmt.6.6

    Abstract In this paper, we investigated the influence of melting on mixed convection heat and mass transfer from the vertical flat plate in a non-Newtonian nanofluid saturated porous medium. The wall and the ambient medium are maintained at constant, but different, levels of temperature and concentration. The Ostwald–de Waele power-law model is used to characterize the non-Newtonian nanofluid behavior. A similarity solution for the transformed governing equations is obtained. The numerical computation is carried out for various values of the non-dimensional physical parameters. The variation of temperature, concentration, heat and mass transfer coefficients with the power-law index, mixed convection parameter, melting… More >

  • Open Access

    ARTICLE

    HEAT AND MASS TRANSFER ON MHD NANOFLUID FLOW PAST A VERTICAL POROUS PLATE IN A ROTATING SYSTEM

    P.V. Satya Narayanaa,*, B.Venkateswarlub

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-10, 2016, DOI:10.5098/hmt.7.8

    Abstract In this paper, we study the chemical reaction and heat source effects on unsteady MHD free convection heat and mass transfer of a nanofluid flow past a semi-infinite flat plate in a rotating system. The plate is assumed to oscillate in time with steady frequency so that the solutions of the boundary layer are the similar oscillatory type. The innovation of the present work is closed-form analytic solutions are obtained for the momentum, energy and concentration equations. The influence of various parameters entering into the problem in the nanofluid velocity, temperature and concentration distributions, as well as the skin friction… More >

  • Open Access

    ARTICLE

    ASYMMETRIC FLOW OF A NANOFLUID BETWEEN EXPANDING OR CONTRACTING PERMEABLE WALLS WITH THERMAL RADIATION

    A. Vijayalakshmi, S. Srinivas*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-11, 2016, DOI:10.5098/hmt.7.10

    Abstract In the present study, the flow and heat transfer characteristics of a nanofluid in an expanding or contracting porous channel with different permeabilities in presence of thermal radiation are investigated. Analytical solutions for the flow variables are obtained by employing homotopy analysis method (HAM). Maxwell-Garnetts and Brinkman models are considered to calculate the thermal conductivity and the viscosity of nanofluid. In this investigation, we considered water and ethylene glycol as base fluids and silver ( Ag ), copper ( Cu ), titanium dioxide ( TiO2 ) and alumina ( Al2O3 ) as nanoparticles. The effects of various emerging parameters on… More >

  • Open Access

    ARTICLE

    MHD UNSTEADY FLOW OF A WILLIAMSON NANOFLUID IN A VERTICAL POROUS SPACE WITH OSCILLATING WALL TEMPERATURE

    D. Lourdu Immaculatea , R. Muthurajb,*, Anant Kant Shuklac, S. Srinivasd

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-14, 2016, DOI:10.5098/hmt.7.12

    Abstract This article aims to examine the MHD unsteady flow of Williamson nanofluid in a vertical channel filled with a porous material and oscillating wall temperature. The modeling of this problem is transformed to ordinary differential equations by collecting the non-periodic and periodic terms and then series solutions are obtained by using a powerful method known as the homotopy analysis method (HAM). The influence of involved parameters on heat and mass transfer characteristics of the fluid flow is computed and presented graphically. Further, variations on volume flow rate, coefficient of skin friction, heat transfer rate and mass transfer rate are also… More >

  • Open Access

    ARTICLE

    CFD MODELING OF NATURAL CONVECTION HEAT TRANSFER OF TIO2-WATER NANOFLUID IN A CYLINDRICAL CONTAINER

    Seyed Milad Mirabedin*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.17

    Abstract This work focuses on numerical validation of natural convection heat transfer of TiO2-water nanofluids in a cylindrical container using COMSOL. The main aim of this study is to examine different available approaches to calculate effective thermal conductivity and compare them with experimental data available in the literature. Simulation results show that for considered mixture, average Nusselt number decreases by increasing Rayleigh number and particle volume fraction. It has been found that only one model was able to represent similar trends for given particle volume fractions, compared to experimental results. More >

  • Open Access

    ARTICLE

    FREE CONVECTIVE MAGNETO-NANOFLUID FLOW PAST A MOVING VERTICAL PLATE IN THE PRESENCE OF RADIATION AND THERMAL DIFFUSION

    P. Chandra Reddy1, M.C. Raju1,*, G.S.S. Raju2, S.V.K. Varma3

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-11, 2016, DOI:10.5098/hmt.7.28

    Abstract The present analysis is focused on free convective heat and mass transfer characteristics of magneto-nanofluid flow through a moving vertical plate in the presence of thermal radiation and thermal diffusion. The water-based nanofluid containing copper is taken into consideration. A uniform magnetic field is applied perpendicular to the plate. The governing equations are solved by applying finite difference method. Numerical results of the fluid velocity, temperature, concentration, shear stress, rate of heat transfer and rate of mass transfer are presented graphically for different values of the physical parameters encountered in the problem. It is noticed that the fluid velocity increases… More >

  • Open Access

    ARTICLE

    MAGNETOHYDRODYNAMIC(MHD) STAGNATION POINT FLOW AND HEAT TRANSFER OF UPPER-CONVECTED MAXWELL FLUID PAST A STRETCHING SHEET IN THE PRESENCE OF NANOPARTICLES WITH CONVECTIVE HEATING

    Wubshet Ibrahim

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-10, 2016, DOI:10.5098/hmt.7.4

    Abstract The study scrutinizes the effect of convective heating on magnetohydrodynamic (MHD) stagnation point flow and heat transfer of upper-convected Maxell fluid p ast a s tretching s heet i n t he p resence o f n anoparticles. T he m odel u sed i n t he s tudy i ncludes t he e ffect o f B rownian m otion and thermophoresis parameters. The non-linear governing equations and their boundary conditions are initially cast into dimensionless forms by similarity transformation. The resulting system of equations is then solved numerically using fourth order Runge-Kutta method along with shooting technique.… More >

  • Open Access

    ARTICLE

    Mechanism of Thermally Radiative Prandtl Nanofluids and Double-Diffusive Convection in Tapered Channel on Peristaltic Flow with Viscous Dissipation and Induced Magnetic Field

    Yasir Khan1, Safia Akram2,*, Maria Athar3, Khalid Saeed4, Alia Razia2, A. Alameer1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1501-1520, 2024, DOI:10.32604/cmes.2023.029878

    Abstract The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applications in medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In this paper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of a Prandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation and an induced magnetic field. The equations for the current flow scenario are developed, incorporating relevant assumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and double diffusion on public health is… More >

Displaying 21-30 on page 3 of 153. Per Page