Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access


    Optimal Deep Learning Based Intruder Identification in Industrial Internet of Things Environment

    Khaled M. Alalayah1, Fatma S. Alrayes2, Jaber S. Alzahrani3, Khadija M. Alaidarous1, Ibrahim M. Alwayle1, Heba Mohsen4, Ibrahim Abdulrab Ahmed5, Mesfer Al Duhayyim6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3121-3139, 2023, DOI:10.32604/csse.2023.036352

    Abstract With the increased advancements of smart industries, cybersecurity has become a vital growth factor in the success of industrial transformation. The Industrial Internet of Things (IIoT) or Industry 4.0 has revolutionized the concepts of manufacturing and production altogether. In industry 4.0, powerful Intrusion Detection Systems (IDS) play a significant role in ensuring network security. Though various intrusion detection techniques have been developed so far, it is challenging to protect the intricate data of networks. This is because conventional Machine Learning (ML) approaches are inadequate and insufficient to address the demands of dynamic IIoT networks. Further, the existing Deep Learning (DL)… More >

  • Open Access


    Wireless Sensor Security Issues on Data Link Layer: A Survey

    Muhammad Zulkifl Hasan*, Zurina Mohd Hanapi, Muhammad Zunnurain Hussain

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4065-4084, 2023, DOI:10.32604/cmc.2023.036444

    Abstract A computer network can be defined as many computing devices connected via a communication medium like the internet. Computer network development has proposed how humans and devices communicate today. These networks have improved, facilitated, and made conventional forms of communication easier. However, it has also led to uptick in-network threats and assaults. In 2022, the global market for information technology is expected to reach $170.4 billion. However, in contrast, 95% of cyber security threats globally are caused by human action. These networks may be utilized in several control systems, such as home-automation, chemical and physical assault detection, intrusion detection, and… More >

  • Open Access


    A New Model for Network Security Situation Assessment of the Industrial Internet

    Ming Cheng1, Shiming Li1,3,*, Yuhe Wang1, Guohui Zhou1, Peng Han1, Yan Zhao2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2527-2555, 2023, DOI:10.32604/cmc.2023.036427

    Abstract To address the problem of network security situation assessment in the Industrial Internet, this paper adopts the evidential reasoning (ER)algorithm and belief rule base (BRB) method to establish an assessment model. First, this paper analyzes the influencing factors of the Industrial Internet and selects evaluation indicators that contain not only quantitative data but also qualitative knowledge. Second, the evaluation indicators are fused with expert knowledge and the ER algorithm. According to the fusion results, a network security situation assessment model of the Industrial Internet based on the ER and BRB method is established, and the projection covariance matrix adaptive evolution… More >

  • Open Access


    Application of Zero-Watermarking for Medical Image in Intelligent Sensor Network Security

    Shixin Tu, Yuanyuan Jia, Jinglong Du*, Baoru Han*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 293-321, 2023, DOI:10.32604/cmes.2023.022308

    Abstract The field of healthcare is considered to be the most promising application of intelligent sensor networks. However, the security and privacy protection of medical images collected by intelligent sensor networks is a hot problem that has attracted more and more attention. Fortunately, digital watermarking provides an effective method to solve this problem. In order to improve the robustness of the medical image watermarking scheme, in this paper, we propose a novel zero-watermarking algorithm with the integer wavelet transform (IWT), Schur decomposition and image block energy. Specifically, we first use IWT to extract low-frequency information and divide them into non-overlapping blocks,… More >

  • Open Access


    Analysis of Campus Network Security

    Han Chu, Haoliang Lan*, Jie Xu, Xiao Feng Sun

    Journal of New Media, Vol.4, No.4, pp. 219-229, 2022, DOI:10.32604/jnm.2022.034830

    Abstract Campus network provides a critical stage to student service and campus administration, which assumes a paramount part in the strategy of ‘Rejuvenating the Country through Science and Education’ and ‘Revitalizing China through Talented Persons’. However, with the rapid development and continuous expansion of campus network, network security needs to be an essential issue that could not be overlooked in campus network construction. In order to ensure the normal operation of various functions of the campus network, the security risk level of the campus network is supposed to be controlled within a reasonable range at any moment. Through literature research, theory… More >

  • Open Access


    A New Intrusion Detection Algorithm AE-3WD for Industrial Control Network

    Yongzhong Li1,2,*, Cong Li1, Yuheng Li3, Shipeng Zhang2

    Journal of New Media, Vol.4, No.4, pp. 205-217, 2022, DOI:10.32604/jnm.2022.034778

    Abstract In this paper, we propose a intrusion detection algorithm based on auto-encoder and three-way decisions (AE-3WD) for industrial control networks, aiming at the security problem of industrial control network. The ideology of deep learning is similar to the idea of intrusion detection. Deep learning is a kind of intelligent algorithm and has the ability of automatically learning. It uses self-learning to enhance the experience and dynamic classification capabilities. We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning, a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve… More >

  • Open Access


    Central Aggregator Intrusion Detection System for Denial of Service Attacks

    Sajjad Ahmad1, Imran Raza1, M. Hasan Jamal1, Sirojiddin Djuraev2, Soojung Hur3, Imran Ashraf3,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2363-2377, 2023, DOI:10.32604/cmc.2023.032694

    Abstract Vehicle-to-grid technology is an emerging field that allows unused power from Electric Vehicles (EVs) to be used by the smart grid through the central aggregator. Since the central aggregator is connected to the smart grid through a wireless network, it is prone to cyber-attacks that can be detected and mitigated using an intrusion detection system. However, existing intrusion detection systems cannot be used in the vehicle-to-grid network because of the special requirements and characteristics of the vehicle-to-grid network. In this paper, the effect of denial-of-service attacks of malicious electric vehicles on the central aggregator of the vehicle-to-grid network is investigated… More >

  • Open Access


    BotSward: Centrality Measures for Graph-Based Bot Detection Using Machine Learning

    Khlood Shinan1,2, Khalid Alsubhi2, M. Usman Ashraf3,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 693-714, 2023, DOI:10.32604/cmc.2023.031641

    Abstract The number of botnet malware attacks on Internet devices has grown at an equivalent rate to the number of Internet devices that are connected to the Internet. Bot detection using machine learning (ML) with flow-based features has been extensively studied in the literature. Existing flow-based detection methods involve significant computational overhead that does not completely capture network communication patterns that might reveal other features of malicious hosts. Recently, Graph-Based Bot Detection methods using ML have gained attention to overcome these limitations, as graphs provide a real representation of network communications. The purpose of this study is to build a botnet… More >

  • Open Access


    Wireless Network Security Using Load Balanced Mobile Sink Technique

    Reem Alkanhel1, Mohamed Abouhawwash2,3, S. N. Sangeethaa4, K. Venkatachalam5, Doaa Sami Khafaga6,*

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 2135-2149, 2023, DOI:10.32604/iasc.2023.028852

    Abstract Real-time applications based on Wireless Sensor Network (WSN) technologies are quickly increasing due to intelligent surroundings. Among the most significant resources in the WSN are battery power and security. Clustering strategies improve the power factor and secure the WSN environment. It takes more electricity to forward data in a WSN. Though numerous clustering methods have been developed to provide energy consumption, there is indeed a risk of unequal load balancing, resulting in a decrease in the network’s lifetime due to network inequalities and less security. These possibilities arise due to the cluster head’s limited life span. These cluster heads (CH)… More >

  • Open Access


    Adaptive Polling Rate for SNMP for Detecting Elusive DDOS

    Yichiet Aun*, Yen-Min Jasmina Khaw, Ming-Lee Gan, Vasaki Ponnusamy

    Journal of Cyber Security, Vol.4, No.1, pp. 17-28, 2022, DOI:10.32604/jcs.2022.027524

    Abstract Resilient network infrastructure is pivotal for business entities that are growing reliance on the Internet. Distributed Denial-of-Service (DDOS) is a common network threat that collectively overwhelms and exhausts network resources using coordinated botnets to interrupt access to network services, devices, and resources. IDS is typically deployed to detect DDOS based on Snort rules. Although being fairly accurate, IDS operates on a compute-intensive packet inspection technique and lacks rapid DDOS detection. Meanwhile, SNMP is a comparably lightweight countermeasure for fast detection. However, this SNMP trigger is often circumvented if the DDOS burst rate is coordinated to flood the network smaller than… More >

Displaying 1-10 on page 1 of 36. Per Page  

Share Link