Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    IoT Wireless Intrusion Detection and Network Traffic Analysis

    Vasaki Ponnusamy1, Aun Yichiet1, NZ Jhanjhi2,*, Mamoona humayun3, Maram Fahhad Almufareh3

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 865-879, 2022, DOI:10.32604/csse.2022.018801 - 24 September 2021

    Abstract Enhancement in wireless networks had given users the ability to use the Internet without a physical connection to the router. Almost every Internet of Things (IoT) devices such as smartphones, drones, and cameras use wireless technology (Infrared, Bluetooth, IrDA, IEEE 802.11, etc.) to establish multiple inter-device connections simultaneously. With the flexibility of the wireless network, one can set up numerous ad-hoc networks on-demand, connecting hundreds to thousands of users, increasing productivity and profitability significantly. However, the number of network attacks in wireless networks that exploit such flexibilities in setting and tearing down networks has become… More >

  • Open Access

    ARTICLE

    Intrusion Detection Method of Internet of Things Based on Multi GBDT Feature Dimensionality Reduction and Hierarchical Traffic Detection

    Taifeng Pan*

    Journal of Quantum Computing, Vol.3, No.4, pp. 161-171, 2021, DOI:10.32604/jqc.2021.025373 - 10 January 2022

    Abstract The rapid development of Internet of Things (IoT) technology has brought great convenience to people’s life. However, the security protection capability of IoT is weak and vulnerable. Therefore, more protection needs to be done for the security of IoT. The paper proposes an intrusion detection method for IoT based on multi GBDT feature reduction and hierarchical traffic detection model. Firstly, GBDT is used to filter the features of IoT traffic data sets BoT-IoT and UNSW-NB15 to reduce the traffic feature dimension. At the same time, in order to improve the reliability of feature filtering, this… More >

  • Open Access

    ARTICLE

    Using Object Detection Network for Malware Detection and Identification in Network Traffic Packets

    Chunlai Du1, Shenghui Liu1, Lei Si2, Yanhui Guo2, *, Tong Jin1

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1785-1796, 2020, DOI:10.32604/cmc.2020.010091 - 30 June 2020

    Abstract In recent years, the number of exposed vulnerabilities has grown rapidly and more and more attacks occurred to intrude on the target computers using these vulnerabilities such as different malware. Malware detection has attracted more attention and still faces severe challenges. As malware detection based traditional machine learning relies on exports’ experience to design efficient features to distinguish different malware, it causes bottleneck on feature engineer and is also time-consuming to find efficient features. Due to its promising ability in automatically proposing and selecting significant features, deep learning has gradually become a research hotspot. In More >

  • Open Access

    ARTICLE

    A Network Traffic Classification Model Based on Metric Learning

    Mo Chen1, Xiaojuan Wang1, *, Mingshu He1, Lei Jin1, Khalid Javeed2, Xiaojun Wang3

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 941-959, 2020, DOI:10.32604/cmc.2020.09802 - 10 June 2020

    Abstract Attacks on websites and network servers are among the most critical threats in network security. Network behavior identification is one of the most effective ways to identify malicious network intrusions. Analyzing abnormal network traffic patterns and traffic classification based on labeled network traffic data are among the most effective approaches for network behavior identification. Traditional methods for network traffic classification utilize algorithms such as Naive Bayes, Decision Tree and XGBoost. However, network traffic classification, which is required for network behavior identification, generally suffers from the problem of low accuracy even with the recently proposed deep… More >

Displaying 21-30 on page 3 of 24. Per Page