Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (384)
  • Open Access

    ARTICLE

    Prison Term Prediction on Criminal Case Description with Deep Learning

    Shang Li1, Hongli Zhang1, *, Lin Ye1, Shen Su2, Xiaoding Guo1, Haining Yu1, 3, Binxing Fang1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1217-1231, 2020, DOI:10.32604/cmc.2020.06787

    Abstract The task of prison term prediction is to predict the term of penalty based on textual fact description for a certain type of criminal case. Recent advances in deep learning frameworks inspire us to propose a two-step method to address this problem. To obtain a better understanding and more specific representation of the legal texts, we summarize a judgment model according to relevant law articles and then apply it in the extraction of case feature from judgment documents. By formalizing prison term prediction as a regression problem, we adopt the linear regression model and the More >

  • Open Access

    ARTICLE

    Growing and Pruning Based Deep Neural Networks Modeling for Effective Parkinson’s Disease Diagnosis

    Kemal Akyol1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.2, pp. 619-632, 2020, DOI:10.32604/cmes.2020.07632 - 01 February 2020

    Abstract Parkinson’s disease is a serious disease that causes death. Recently, a new dataset has been introduced on this disease. The aim of this study is to improve the predictive performance of the model designed for Parkinson’s disease diagnosis. By and large, original DNN models were designed by using specific or random number of neurons and layers. This study analyzed the effects of parameters, i.e., neuron number and activation function on the model performance based on growing and pruning approach. In other words, this study addressed the optimum hidden layer and neuron numbers and ideal activation More >

  • Open Access

    ARTICLE

    Scalable Skin Lesion Multi-Classification Recognition System

    Fan Liu1, Jianwei Yan2, Wantao Wang2, Jian Liu2, *, Junying Li3, Alan Yang4

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 801-816, 2020, DOI:10.32604/cmc.2020.07039

    Abstract Skin lesion recognition is an important challenge in the medical field. In this paper, we have implemented an intelligent classification system based on convolutional neural network. First of all, this system can classify whether the input image is a dermascopic image with an accuracy of 99%. And then diagnose the dermoscopic image and the non-skin mirror image separately. Due to the limitation of the data, we can only realize the recognition of vitiligo by non-skin mirror. We propose a vitiligo recognition based on the probability average of three structurally identical CNN models. The method is More >

  • Open Access

    ARTICLE

    Smartphone User Authentication Based on Holding Position and Touch-Typing Biometrics

    Yu Sun1,2,*, Qiyuan Gao3, Xiaofan Du3, Zhao Gu3

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 1365-1375, 2019, DOI:10.32604/cmc.2019.06294

    Abstract In this advanced age, when smart phones are the norm, people utilize social networking, online shopping, and even private information storage through smart phones. As a result, identity authentication has become the most critical security activity in this period of the intelligent craze. By analyzing the shortcomings of the existing authentication methods, this paper proposes an identity authentication method based on the behavior of smartphone users. Firstly, the sensor data and touch-screen data of the smart phone users are collected through android programming. Secondly, the eigenvalues of this data are extracted and sent to the More >

  • Open Access

    ARTICLE

    Hashtag Recommendation Using LSTM Networks with Self-Attention

    Yatian Shen1, Yan Li1, Jun Sun1,*, Wenke Ding1, Xianjin Shi1, Lei Zhang1, Xiajiong Shen1, Jing He2

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 1261-1269, 2019, DOI:10.32604/cmc.2019.06104

    Abstract On Twitter, people often use hashtags to mark the subject of a tweet. Tweets have specific themes or content that are easy for people to manage. With the increase in the number of tweets, how to automatically recommend hashtags for tweets has received wide attention. The previous hashtag recommendation methods were to convert the task into a multi-class classification problem. However, these methods can only recommend hashtags that appeared in historical information, and cannot recommend the new ones. In this work, we extend the self-attention mechanism to turn the hashtag recommendation task into a sequence More >

  • Open Access

    ARTICLE

    Forecasting Damage Mechanics By Deep Learning

    Duyen Le Hien Nguyen1, Dieu Thi Thanh Do2, Jaehong Lee2, Timon Rabczuk3, Hung Nguyen-Xuan1,4,*

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 951-977, 2019, DOI:10.32604/cmc.2019.08001

    Abstract We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems. The methodologies that are able to work accurately for less computational and resolving attempts are a significant demand nowadays. Relied on learning an amount of information from given data, the long short-term memory (LSTM) method and multi-layer neural networks (MNN) method are applied to predict solutions. Numerical examples are implemented for predicting fracture growth rates of L-shape concrete specimen under load ratio, single-edge-notched beam forced by 4-point shear and hydraulic fracturing in permeable porous media problems such as storage-toughness More >

  • Open Access

    ABSTRACT

    Convolution Neural Networks and Support Vector Machines for Automatic Segmentation of Intracoronary Optical Coherence Tomography

    Caining Zhang1, Huaguang Li2, Xiaoya Guo3, David Molony4, Xiaopeng Guo2, Habib Samady4, Don P. Giddens4,5, Lambros Athanasiou6, Rencan Nie2,*, Jinde Cao3,*, Dalin Tang1,*,7

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 31-31, 2019, DOI:10.32604/mcb.2019.06983

    Abstract Cardiovascular diseases are closely associated with deteriorating atherosclerotic plaques. Optical coherence tomography (OCT) is a recently developed intravascular imaging technique with high resolution approximately 10 microns and could provide accurate quantification of coronary plaque morphology. However, tissue segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective. To overcome these limitations, two automatic segmentation methods for intracoronary OCT image based on support vector machine (SVM) and convolutional neural network (CNN) were performed to identify the plaque region and characterize plaque components. In vivo IVUS and OCT… More >

  • Open Access

    ARTICLE

    A Multi-Scale Network with the Encoder-Decoder Structure for CMR Segmentation

    Chaoyang Xia1, Jing Peng1, Zongqing Ma2, Xiaojie Li1,*

    Journal of Information Hiding and Privacy Protection, Vol.1, No.3, pp. 109-117, 2019, DOI:10.32604/jihpp.2019.07198

    Abstract Cardiomyopathy is one of the most serious public health threats. The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning. Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle (LV) manually in routine clinical diagnosis or treatment planning period. This task is time-consuming and error-prone. Therefore, it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance (CMR) imaging datasets. However, due to the low image quality and the deformation caused by heartbeat, there is no effective… More >

  • Open Access

    ARTICLE

    Ensemble Recurrent Neural Network-Based Residual Useful Life Prognostics of Aircraft Engines

    Jun Wu1,*, Kui Hu1, Yiwei Cheng2, Ji Wang1, Chao Deng2,*, Yuanhan Wang3

    Structural Durability & Health Monitoring, Vol.13, No.3, pp. 317-329, 2019, DOI:10.32604/sdhm.2019.05571

    Abstract Residual useful life (RUL) prediction is a key issue for improving efficiency of aircraft engines and reducing their maintenance cost. Owing to various failure mechanism and operating environment, the application of classical models in RUL prediction of aircraft engines is fairly difficult. In this study, a novel RUL prognostics method based on using ensemble recurrent neural network to process massive sensor data is proposed. First of all, sensor data obtained from the aircraft engines are preprocessed to eliminate singular values, reduce random fluctuation and preserve degradation trend of the raw sensor data. Secondly, three kinds More >

  • Open Access

    ARTICLE

    Applying Neural Networks for Tire Pressure Monitoring Systems

    Alex Kost1, Wael A. Altabey2,3,4, Mohammad Noori1,2,*, Taher Awad4

    Structural Durability & Health Monitoring, Vol.13, No.3, pp. 247-266, 2019, DOI:10.32604/sdhm.2019.07025

    Abstract A proof-of-concept indirect tire-pressure monitoring system is developed using artificial neural networks to identify the tire pressure of a vehicle tire. A quarter-car model was developed with MATLAB and Simulink to generate simulated accelerometer output data. Simulation data are used to train and evaluate a recurrent neural network with long short-term memory blocks (RNN-LSTM) and a convolutional neural network (CNN) developed in Python with Tensorflow. Bayesian Optimization via SigOpt was used to optimize training and model parameters. The predictive accuracy and training speed of the two models with various parameters are compared. Finally, future work More >

Displaying 351-360 on page 36 of 384. Per Page