Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (453)
  • Open Access

    ARTICLE

    Influence of Vertical Irregularity on the Seismic Behavior of Base Isolated RC Structures with Lead Rubber Bearings under Pulse-Like Earthquakes

    Ali Mahamied1, Amjad A. Yasin1, Yazan Alzubi1,*, Jamal Al Adwan1, Issa Mahamied2

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 501-519, 2023, DOI:10.32604/sdhm.2023.028686

    Abstract Nowadays, an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature. On the other hand, investigations regarding the irregular base-isolated reinforced concrete structures’ performance when subjected to pulse-like earthquakes are very scarce. The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands. Thus, this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures. Within the study scope,… More >

  • Open Access

    ARTICLE

    A Novel Accurate Method for Multi-Term Time-Fractional Nonlinear Diffusion Equations in Arbitrary Domains

    Tao Hu1, Cheng Huang2, Sergiy Reutskiy3,*, Jun Lu4, Ji Lin5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1521-1548, 2024, DOI:10.32604/cmes.2023.030449

    Abstract A novel accurate method is proposed to solve a broad variety of linear and nonlinear (1+1)-dimensional and (2+1)- dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity. For (1+1)-dimensional problems, analytical solutions that satisfy the boundary requirements are derived. Such solutions are numerically calculated using the trigonometric basis approximation for (2+1)-dimensional problems. With the aid of these analytical or numerical approximations, the original problems can be converted into the fractional ordinary differential equations, and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients. An efficient backward substitution strategy that… More >

  • Open Access

    ARTICLE

    Construction of a Computational Scheme for the Fuzzy HIV/AIDS Epidemic Model with a Nonlinear Saturated Incidence Rate

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1405-1425, 2024, DOI:10.32604/cmes.2023.028946

    Abstract This work aimed to construct an epidemic model with fuzzy parameters. Since the classical epidemic model does not elaborate on the successful interaction of susceptible and infective people, the constructed fuzzy epidemic model discusses the more detailed versions of the interactions between infective and susceptible people. The next-generation matrix approach is employed to find the reproduction number of a deterministic model. The sensitivity analysis and local stability analysis of the system are also provided. For solving the fuzzy epidemic model, a numerical scheme is constructed which consists of three time levels. The numerical scheme has an advantage over the existing… More >

  • Open Access

    ARTICLE

    Bifurcation Analysis of a Nonlinear Vibro-Impact System with an Uncertain Parameter via OPA Method

    Dongmei Huang1, Dang Hong2, Wei Li1,*, Guidong Yang1, Vesna Rajic3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 509-524, 2024, DOI:10.32604/cmes.2023.029215

    Abstract In this paper, the bifurcation properties of the vibro-impact systems with an uncertain parameter under the impulse and harmonic excitations are investigated. Firstly, by means of the orthogonal polynomial approximation (OPA) method, the nonlinear damping and stiffness are expanded into the linear combination of the state variable. The condition for the appearance of the vibro-impact phenomenon is to be transformed based on the calculation of the mean value. Afterwards, the stochastic vibro-impact system can be turned into an equivalent high-dimensional deterministic non-smooth system. Two different Poincaré sections are chosen to analyze the bifurcation properties and the impact numbers are identified… More >

  • Open Access

    PROCEEDINGS

    A Novel Finite Difference Method for Solving Nonlinear Static Beam Equations of Wind Turbine Blade Under Large Deflections

    Hang Meng1,*, Jiaxing Wu1, Guangxing Wu1, Kai Long1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09685

    Abstract Wind energy is one of the most promising renewable energies in the world. To generate more electricity, the wind turbines are getting larger and larger in recent decades [1]. With the wind turbine size growing, the length of the blade is getting slender. The large deflections of slender wind turbine blade will inevitably lead to geometric nonlinearities [2], e.g. nonlinear coupling between torsion and deflection, which complicates the governing equations of motion. To simplify the solution of the nonlinear equations, in the current research, a novel finite-difference method was proposed to solve the nonlinear equations of static beam model for… More >

  • Open Access

    ARTICLE

    A Nonlinear Spatiotemporal Optimization Method of Hypergraph Convolution Networks for Traffic Prediction

    Difeng Zhu1, Zhimou Zhu2, Xuan Gong1, Demao Ye1, Chao Li3,*, Jingjing Chen4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3083-3100, 2023, DOI:10.32604/iasc.2023.040517

    Abstract Traffic prediction is a necessary function in intelligent transportation systems to alleviate traffic congestion. Graph learning methods mainly focus on the spatiotemporal dimension, but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments. There exist two issues: 1) deep integration of the spatiotemporal information and 2) global spatial dependencies for structural properties. To address these issues, we propose a nonlinear spatiotemporal optimization method, which introduces hypergraph convolution networks (HGCN). The method utilizes the higher-order spatial features of the road network captured by HGCN, and dynamically integrates them with the historical data to… More >

  • Open Access

    PROCEEDINGS

    Extension of Ordinary State-Based Peridynamic Model for Nonlinear Analysis

    Mengnan Zhang1,*, Fucheng Tian1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09593

    Abstract Peridynamic is a nonlocal theory that uses integral forms of governing equations, making it suitable for describing objects with discontinuous states such as cracks. After more than two decades of development, peridynamic has been effectively applied to numerous solid mechanics studies. However, in the field of ordinary state-based peridynamic modeling nonlinear deformation, a more comprehensive model that can establish a general connection with continuum mechanics and allow for the selection of different influence functions is still lacking. As a consequence, a further extension to existing models is promising, and it represents a substantial addition to the current peridynamic model. In… More >

  • Open Access

    PROCEEDINGS

    Nonlinear Dynamics of a Flexible Tether-Net System for Space Debris Capture

    Weicheng Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09017

    Abstract Here, a flexible tether-net system is applied to capture the space debris and a numerical framework is established to explore its nonlinear dynamic behaviors, which comprises four principal phases: folding, spreading, contacting, and closing [1]. Based on the discretization of the whole structure into multiple nodes and connected edges, elastic force vectors and associated Jacobian matrix are derived analytically to solve a series of equations of motion. With a fully implicit method applied to analyze the nonlinear dynamics of a slender rod network, the involved mechanical responses are investigated numerically accounting for the interactions. Contact between the deformable net and… More >

  • Open Access

    PROCEEDINGS

    Thermal-Mechanical Buckling and Postbuckling Analysis of Thin-Walled Structures Using a Reduced Order Method

    Ke Liang1,*, Zhen Yin1, Zheng Li1, Jiaqi Mu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09020

    Abstract Thermal-mechanical buckling has become one of the major failure modes of thin-walled structures which suffer from the high temperature service environment. These structures, such as plates and shells, are commonly involved in many branches of engineering, especially for the aerospace structures. Thermalmechanical buckling analysis plays an important role for lightweight design of aircrafts and launch vehicles, which significantly influences the load-carrying capability of the structure. Geometrical nonlinearities should be well considered to determine an accurate value of the critical buckling temperature/load as well as the postbuckling response.
    In this work, a reduced-order method is proposed for geometrically nonlinear thermal-mechanical analysis… More >

  • Open Access

    ARTICLE

    Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function

    Ola Ragb1, Mokhtar Mohamed2, Mohamed S. Matbuly1, Omer Civalek3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2193-2217, 2023, DOI:10.32604/cmes.2023.028992

    Abstract Four numerical schemes are introduced for the analysis of photocurrent transients in organic photovoltaic devices. The mathematical model for organic polymer solar cells contains a nonlinear diffusion–reaction partial differential equation system with electrostatic convection attached to a kinetic ordinary differential equation. To solve the problem, Polynomial-based differential quadrature, Sinc, and Discrete singular convolution are combined with block marching techniques. These schemes are employed to reduce the problem to a nonlinear algebraic system. The iterative quadrature technique is used to solve the reduced problem. The obtained results agreed with the previous exact one and the finite element method. Further, the effects… More > Graphic Abstract

    Nonlinear Analysis of Organic Polymer Solar Cells Using Differential Quadrature Technique with Distinct and Unique Shape Function

Displaying 11-20 on page 2 of 453. Per Page