Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (98)
  • Open Access

    ARTICLE

    Numerical Investigation on the Aerodynamic Noise Generated by a Simplified Double-Strip Pantograph

    Jiawei Shi1, Shuai Ge1, Xiaozhen Sheng2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 463-480, 2022, DOI:10.32604/fdmp.2022.017508 - 16 December 2021

    Abstract In order to understand the mechanism by which a pantograph can generate aerodynamic noise and grasp its far-field characteristics, a simplified double-strip pantograph is analyzed numerically. Firstly, the unsteady flow field around the pantograph is simulated in the frame of a large eddy simulation (LES) technique. Then the location of the main noise source is determined using surface fluctuating pressure data and the vortex structures in the pantograph flow field are analyzed by means of the Q-criterion. Based on this, the relationship between the wake vortex and the intensity of the aerodynamic sound source on… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Connection Performance of Timber-Concrete Composite Slabs with Inclined Self-Tapping Screws under High Temperature

    Zhentao Chen1, Weidong Lu1,2,*, Yingwei Bao1, Jun Zhang1, Lu Wang1, Kong Yue1

    Journal of Renewable Materials, Vol.10, No.1, pp. 89-104, 2022, DOI:10.32604/jrm.2021.015925 - 27 July 2021

    Abstract The timber-concrete composite (TCC) slabs have become a preferred choice of floor systems in modern multi story timber buildings. This TCC slab consisted of timber and a concrete slab which were commonly connected together with inclined self-tapping screws (STSs). To more accurately predict the fire performance of TCC slabs, the mechanical behavior of TCC connections under high temperature was investigated by numerical simulation in this study. The interface slip of TCC connections was simulated by a proposed Finite Element (FE) model at room temperature, and different diameter and penetration length screws were considered. The effectiveness… More > Graphic Abstract

    Numerical Investigation of Connection Performance of Timber-Concrete Composite Slabs with Inclined Self-Tapping Screws under High Temperature

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF NUSSELT NUMBER FOR NANOFLUIDS FLOW IN AN INCLINED CYLINDER

    Kafel Azeez Mohammeda,*, Ahmed Mustaffa Saleemb , Zain alabdeen H. Obaida

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-8, 2021, DOI:10.5098/hmt.16.20

    Abstract Numerical investigation is performed for the determination of Nusselt number of ZnO, TiO2 and SiO2 nanoparticles dispersed in 60% ethylene glycol and 40% water inside inclined cylinder for adiabatic and isothermal process. The present study was conducted for both the constant heat flux (10,000 W/m2) and constant wall temperature (313.15 K) boundary conditions. At the inlet, the uniform axial velocity and initial temperature (293 K) were assumed. The results show the change of average Nusselt number at Reynolds number (400), Rayleigh number (106) and volume fraction percentage (2%). From results for adiabatic process when increasing the slop More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE ASSESSMENT IN A CIRCULAR TUBE FITTED WITH VARIOUS SIZES OF MODIFIED V-BAFFLES: A NUMERICAL INVESTIGATION

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-16, 2021, DOI:10.5098/hmt.16.17

    Abstract This research reports numerical examinations on fluid flow, heat transfer behavior and thermal performance analysis in a circular tube equipped with modified V-baffles (CTMVB). The modified V-baffle (MVB) is a combination vortex generator between V-baffles/V-orifices which are placed on the tube wall and V-baffles which are inserted at the core of the tested tube. The MVB height is separated into two parts; b1 represents the MVB height on the tube wall, while b2 represents the MVB height at the core of the tested round tube. The MVB height to tube diameter ratios, b/D, are adjusted; b1/D… More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION OF FLOW AND HEAT TRANSFER IN CORRUGATED PARALLEL CHANNEL WITH SINUSOIDAL WAVE SURFACE

    Jingquan Zhanga,b, Kun Zhanga,b,*

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-6, 2021, DOI:10.5098/hmt.17.14

    Abstract Detailed numerical analysis is presented for flow and heat transfer in sinusoidal-corrugated parallel channel with six discrete heat sources placed under the bottom surface. Three dimensional numerical model are applied for simulating the flow and heat transfer process and the Colburn j factor is applied to evaluate the overall performance of the corrugated liquid cooled channel. The results show that the maximum temperature in the middle section decreases and the pressure loss increases as the wavelength of sinusoidal surface on the bottom decreases, while the increasing wave amplitude of corrugated surface can enhance the heat More >

  • Open Access

    ARTICLE

    Numerical Investigation on the Secondary Flow Control by Using Splitters at Different Positions with Respect to the Main Blade

    Tao Bian1, Xin Shen2, Jun Feng1, Bing Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.3, pp. 615-628, 2021, DOI:10.32604/fdmp.2021.014902 - 29 April 2021

    Abstract In turbomachinery, strong secondary flow can produce significant losses of total pressure near the endwall and reduce the efficiency of the considered turbomachine. In this study, splitters located at different positions with respect to the main blade have been used to reduce such losses and improve the efficiency of the outlet guide vane (OGV). Three different relative positions have been considered assuming a NACA 65-010 profile for both the main blade and the splitter. The numerical results indicate that splitters can effectively reduce the total pressure loss by suppressing the secondary flow around the main More >

  • Open Access

    ARTICLE

    A Numerical Investigation of the Stress Relief Zones Around a Longwall Face in the Lower Seam for Gas Drainage Considerations

    Chunlei Zhang1,2,3,*, Y. P. Chugh2, Ruimin Feng4, Yong Zhang5, Wei Shen1, Jingke Wu1, Yushun Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 135-157, 2021, DOI:10.32604/cmes.2021.014665 - 30 March 2021

    Abstract Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal and gas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but also in increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCS is mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistribution effects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height… More >

  • Open Access

    ARTICLE

    Optimality of Solution with Numerical Investigation for Coronavirus Epidemic Model

    Naveed Shahid1,2, Dumitru Baleanu3,4,5, Nauman Ahmed1,2, Tahira Sumbal Shaikh6, Ali Raza7,*, Muhammad Sajid Iqbal1, Muhammad Rafiq8, Muhammad Aziz-ur Rehman2

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1713-1728, 2021, DOI:10.32604/cmc.2021.014191 - 05 February 2021

    Abstract The novel coronavirus disease, coined as COVID-19, is a murderous and infectious disease initiated from Wuhan, China. This killer disease has taken a large number of lives around the world and its dynamics could not be controlled so far. In this article, the spatio-temporal compartmental epidemic model of the novel disease with advection and diffusion process is projected and analyzed. To counteract these types of diseases or restrict their spread, mankind depends upon mathematical modeling and medicine to reduce, alleviate, and anticipate the behavior of disease dynamics. The existence and uniqueness of the solution for… More >

  • Open Access

    ARTICLE

    Mesoscopic-Scale Numerical Investigation Including the Inuence of Process Parameters on LPBF Multi-Layer Multi-Path Formation

    Liu Cao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 5-23, 2021, DOI:10.32604/cmes.2021.014693 - 22 December 2020

    Abstract As a typical laser additive manufacturing technology, laser powder bed fusion (LPBF) has achieved demonstration applications in aerospace, biomedical and other fields. However, how to select process parameters quickly and reasonably is still the main concern of LPBF production. In order to quantitatively analyze the inuence of different process parameters (laser power, scanning speed, hatch space and layer thickness) on the LPBF process, the multi-layer and multi-path forming process of LPBF was predicted based on the open-source discrete element method framework Yade and the open-source finite volume method framework OpenFOAM. Based on the design of… More >

  • Open Access

    ARTICLE

    Comparative Thermal Performance in SiO2–H2O and (MoS2–SiO2)–H2O Over a Curved Stretching Semi-Infinite Region: A Numerical Investigation

    Basharat Ullah1, Umar Khan1, Hafiz Abdul Wahab1, Ilyas Khan2,*, Dumitru Baleanu3,4,5, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 947-960, 2021, DOI:10.32604/cmc.2020.012430 - 30 October 2020

    Abstract The investigation of Thermal performance in nanofluids and hybrid nanofluids over a curved stretching infinite region strengthens its roots in engineering and industry. Therefore, the comparative thermal analysis in SiO2–H2O and (MoS2–SiO2)–H2O is conducted over curved stretching surface. The model is reduced in the dimensional version via similarity transformation and then treated numerically. The velocity and thermal behavior for both the fluids is decorated against the preeminent parameters. From the analysis, it is examined that the motion of under consideration fluids declines against Fr and λ. The thermal performance enhances for higher volumetric fraction and λ. More >

Displaying 31-40 on page 4 of 98. Per Page