Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (128)
  • Open Access

    ARTICLE

    MHD FLOW AND HEAT TRANSFER OF AN EYRING - POWELL FLUID OVER A LINEAR STRETCHING SHEET WITH VISCOUS DISSIPATION - A NUMERICAL STUDY

    P.V. Satya Narayana1,* , Nainaru Tarakaramu1 , S. Moliya Akshit2 , Jatin P. Ghori2

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-5, 2017, DOI:10.5098/hmt.9.9

    Abstract The present work is devoted to study the numerical simulation of steady magnetohydrodynamic flow and heat transfer of an Eyring-Powell fluid over a stretching sheet with viscous dissipation. The fluid is taken to be two dimensional electrically conducting and the flow is induced by a stretching surface. The basic governing partial differential equations of non-Newtonian fluid are reduced into the coupled nonlinear ordinary differential equations by using similarity transformations. The resulting ordinary differential equations are then solved numerically using shooting method with fourth order Runge- Kutta scheme. The effects of Hartmann number, Eckert number, Grashoff number and Eyring-Powell fluid parameters… More >

  • Open Access

    ARTICLE

    NUMERICAL STUDY OF NON-NEWTONIAN POLYMERIC BOUNDARY LAYER FLOW AND HEAT TRANSFER FROM A PERMEABLE HORIZONTAL ISOTHERMAL CYLINDER

    A. Subba Raoa,* , V. Ramachandra Prasada , P. Rajendraa , M. Sasikalaa , O. Anwar Begb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.2

    Abstract In this article, we investigate the nonlinear steady state boundary layer flow and heat transfer of an incompressible Jeffery non-Newtonian fluid from a permeable horizontal isothermal cylinder. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit, finite-difference technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely with Deborah number (De), surface suction parameter (S), Prandtl number (Pr), ratio of relaxation to retardation times (λ) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary layer regime are examined in… More >

  • Open Access

    ARTICLE

    ENTROPY GENERATION DUE TO NATURAL CONVECTION WITH NON -UNIFORM HEATING OF POROUS QUADRANTAL ENCLOSURE-A NUMERICAL STUDY

    Shantanu Dutta* , Arup Kumar Biswas

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-12, 2018, DOI:10.5098/hmt.10.8

    Abstract Industrial processes optimization for higher energy efficiency may be effectively carried out based on the thermodynamic approach of entropy generation minimization (EGM). This approach provides the key insights on how the available energy (exergy) is being destroyed during the process and the ways to minimize its destruction. In this study, EGM approach is implemented for the analysis of optimal thermal mixing and temperature uniformity due to natural convection in quadrantal cavity filled with porous medium for the material processing applications or for cooling of electrical equipments. Effect of the permeability of the porous medium and the role of non-uniform heating… More >

  • Open Access

    ARTICLE

    NUMERICAL STUDY AND CORRELATIONS DEVELOPMENT ON TWIN-PARALLEL JETS FLOW WITH NON-EQUAL OUTLET VELOCITIES

    Nidhal Hnaiena , Salwa Marzouka , Lioua Kolsia,b,*, Abdullah A.A.A. Al-Rashedc , Habib Ben Aissiaa , Jacques Jayd

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-11, 2018, DOI:10.5098/hmt.11.8

    Abstract The purpose of the present paper is to numerically investigate two plane turbulent parallel jets using CFD model. A parametric study was carried out to evaluate the simultaneous effect of the nozzle spacing and the velocity ratio on the merge point (MP), the combined points (CP) as well as the upper (UVC) and lower (LVC) vortices centers positions. Results show that the velocity ratio significantly affects twin-parallel jets flow structure. In fact, increasing the velocity ratio moves the MP, CP, UVC and LVC further upstream along the longitudinal direction while deflecting toward the stronger jet along the transverse direction. Due… More >

  • Open Access

    ARTICLE

    Numerical Study on Mechanism of Blast-Induced Damage Considering Guiding Effect of Water Jet Slot

    Dengfeng Su1, Zizheng Jia1,*, Qiang Zhu1, Zhengguo Li1, Banghong Chen1, Dandan Zheng2

    Structural Durability & Health Monitoring, Vol.17, No.3, pp. 209-224, 2023, DOI:10.32604/sdhm.2022.021257

    Abstract Damage is one of the most important characteristics of rock failure. Studying the damage mechanism of rock blasting under the guiding effect of the water jet slot and revealing the mechanism of controlled blasting with water jet assistance are crucial. In this study, a rock-like material was chosen as the research object for the calibration experiment of the numerical model. The numerical simulation models were then established by ANSYS/LS-DYNA, and the blast-induced damage mechanism under the guiding effect of the water jet slot was analyzed according to the blasting theory. The results indicated that explosive energy accumulates toward the direction… More > Graphic Abstract

    Numerical Study on Mechanism of Blast-Induced Damage Considering Guiding Effect of Water Jet Slot

  • Open Access

    ARTICLE

    NUMERICAL STUDY OF PERIODICALLY FULLY-DEVELOPED FLOW AND HEAT TRANSFER IN CHANNELS WITH PERIODIC SEMICIRCULAR TUBE

    Weiyu Zhanga , Mo Yanga,*, Yuwen Zhangb

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-8, 2019, DOI:10.5098/hmt.12.18

    Abstract The periodically fully-developed flow and heat transfer in channels with periodic semi-circular tube is studied numerically by the direct numerical simulation (DNS), the large eddy simulation (LES), and the Reynolds stress model (RSM). When the Reynolds number is between 3000 and 25000, the Nusselt number obtained by the RSM is closer to the experimental results than the results obtained from other turbulence models. The nonlinear characteristics of flow and heat transfer is revealed based on the results of numerical simulation. When Reynolds number is high, the geometric structure and boundary conditions of the channel are symmetric, but the flow field… More >

  • Open Access

    ARTICLE

    INFLUENCE OF RING SIZE AND LOCATION ON FLOW TOPOLOGY, HEAT TRANSFER STRUCTURE AND THERMAL EFFICIENCY IN HEAT EXCHANGER SQUARE CHANNEL PLACED WITH 30-DEGREE INCLINED SQUARE RING

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-11, 2019, DOI:10.5098/hmt.13.28

    Abstract This paper presents the numerical investigations (finite volume method with SIMPLE algorithm) on flow structure, heat transfer behavior and performance assessment in heat exchanger square channel placed with 30o inclined square ring (ISR). The influences of ring size and placement on flow and heat transfer characteristics are considered for laminar flow region with the Reynolds number in the range around 100 – 2000. The purpose for the insertion of the ISR in the square channel is to induce the vortex flow and also increase the turbulent mixing. The numerical result reveals that the ring size and location have effects for… More >

  • Open Access

    ARTICLE

    FLOW AND HEAT TRANSFER CHARACTERISTICS OF AIR IN SQUARE CHANNEL HEAT EXCHANGER WITH C-SHAPED BAFFLE: A NUMERICAL STUDY

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-18, 2019, DOI:10.5098/hmt.13.23

    Abstract The purpose of the present work is to study flow configuration and heat transfer behavior in a square channel heat exchanger equipped with C-shaped baffle. The influences of flow attack angle and baffle size on flow and heat transfer characteristics are considered for the laminar flow regime with the Reynolds number around 100 – 2000. The numerical study with finite volume method is selected for the present investigation. The SIMPLE algorithms is opted to solve the numerical problem. The numerical results are concluded in terms of flow and heat transfer mechanisms in the tested section. The thermal performance analysis; Nusselt… More >

  • Open Access

    ARTICLE

    EFFECTS OF SERRATED PULSATING AIRFLOW ON LIQUID FILM EVAPORATION IN A VERTICAL CHANNEL: A NUMERICAL STUDY

    Changming Linga,b,*, Yin Zhonga,b

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-6, 2020, DOI:10.5098/hmt.14.25

    Abstract Effects of serrated pulsating airflow on liquid film evaporation in a falling film channel was numerically studied based on a two-dimensional model. The mechanism of pulsating airflow evaporation was studied as the pulsating airflow swept across the vertical liquid film surface at the stagnant temperature. Effects of amplitude, frequency, and velocity of the serrated pulsating airflow at certain evaporation time on evaporation were analyzed. Compared with the uniform airflow, the highest relative evaporation of liquid film on vertical pipe inner surface was increased by about 0.3 %. When the airflow was pulsating, the cycle of vapor mass flow rate was… More >

  • Open Access

    ARTICLE

    TURBULENT HEAT TRANSFER IN AN AXIALLY ROTATING PIPE AT HIGH ROTATION RATE: A NUMERICAL STUDY

    Obed Y.W. Abotsi, John P. Kizito*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-6, 2020, DOI:10.5098/hmt.14.24

    Abstract In this paper, turbulent water flow and heat transfer are studied numerically in a pipe which is rotating about its longitudinal axis. Computations were conducted for axial Reynolds numbers ranging from 10000 to 30000 at different rotation rates. Rotation rate (N) is the ratio of the rotational Reynolds number to the axial Reynolds number. Predictions showed that the Nusselt number (Nu) of the stationary pipe (N=0) was augmented by 50-58% at N=5, 105-132% at N=10, 150-201% at N=15, 208-265% at N=20, and 320-373% at N=30. Improvements in the heat transfer rate was linked to the introduction of tangential velocity components… More >

Displaying 21-30 on page 3 of 128. Per Page