Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (134)
  • Open Access

    ARTICLE

    Probability-Enhanced Anchor-Free Detector for Remote-Sensing Object Detection

    Chengcheng Fan1,2,*, Zhiruo Fang3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4925-4943, 2024, DOI:10.32604/cmc.2024.049710

    Abstract Anchor-free object-detection methods achieve a significant advancement in field of computer vision, particularly in the realm of real-time inferences. However, in remote sensing object detection, anchor-free methods often lack of capability in separating the foreground and background. This paper proposes an anchor-free method named probability-enhanced anchor-free detector (ProEnDet) for remote sensing object detection. First, a weighted bidirectional feature pyramid is used for feature extraction. Second, we introduce probability enhancement to strengthen the classification of the object’s foreground and background. The detector uses the logarithm likelihood as the final score to improve the classification of the More >

  • Open Access

    ARTICLE

    Real-Time Object Detection and Face Recognition Application for the Visually Impaired

    Karshiev Sanjar1, Soyoun Bang1, Sookhee Ryue2, Heechul Jung1,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3569-3583, 2024, DOI:10.32604/cmc.2024.048312

    Abstract The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe, navigable routes. Traditional approaches primarily focus on broad applications such as wayfinding, obstacle detection, and fall prevention. However, there is a notable discrepancy in applying these technologies to more specific scenarios, like identifying distinct food crop types or recognizing faces. This study proposes a real-time application designed for visually impaired individuals, aiming to bridge this research-application gap. It introduces a system capable of detecting 20 different food crop types… More >

  • Open Access

    ARTICLE

    YOLO-MFD: Remote Sensing Image Object Detection with Multi-Scale Fusion Dynamic Head

    Zhongyuan Zhang, Wenqiu Zhu*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2547-2563, 2024, DOI:10.32604/cmc.2024.048755

    Abstract Remote sensing imagery, due to its high altitude, presents inherent challenges characterized by multiple scales, limited target areas, and intricate backgrounds. These inherent traits often lead to increased miss and false detection rates when applying object recognition algorithms tailored for remote sensing imagery. Additionally, these complexities contribute to inaccuracies in target localization and hinder precise target categorization. This paper addresses these challenges by proposing a solution: The YOLO-MFD model (YOLO-MFD: Remote Sensing Image Object Detection with Multi-scale Fusion Dynamic Head). Before presenting our method, we delve into the prevalent issues faced in remote sensing imagery… More >

  • Open Access

    ARTICLE

    Enhanced Object Detection and Classification via Multi-Method Fusion

    Muhammad Waqas Ahmed1, Nouf Abdullah Almujally2, Abdulwahab Alazeb3, Asaad Algarni4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3315-3331, 2024, DOI:10.32604/cmc.2024.046501

    Abstract Advances in machine vision systems have revolutionized applications such as autonomous driving, robotic navigation, and augmented reality. Despite substantial progress, challenges persist, including dynamic backgrounds, occlusion, and limited labeled data. To address these challenges, we introduce a comprehensive methodology to enhance image classification and object detection accuracy. The proposed approach involves the integration of multiple methods in a complementary way. The process commences with the application of Gaussian filters to mitigate the impact of noise interference. These images are then processed for segmentation using Fuzzy C-Means segmentation in parallel with saliency mapping techniques to find… More >

  • Open Access

    ARTICLE

    A Novel Foreign Object Detection Method in Transmission Lines Based on Improved YOLOv8n

    Yakui Liu1,2,3,*, Xing Jiang1, Ruikang Xu1, Yihao Cui1, Chenhui Yu1, Jingqi Yang1, Jishuai Zhou1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1263-1279, 2024, DOI:10.32604/cmc.2024.048864

    Abstract The rapid pace of urban development has resulted in the widespread presence of construction equipment and increasingly complex conditions in transmission corridors. These conditions pose a serious threat to the safe operation of the power grid. Machine vision technology, particularly object recognition technology, has been widely employed to identify foreign objects in transmission line images. Despite its wide application, the technique faces limitations due to the complex environmental background and other auxiliary factors. To address these challenges, this study introduces an improved YOLOv8n. The traditional stepwise convolution and pooling layers are replaced with a spatial-depth… More >

  • Open Access

    ARTICLE

    A Study on Enhancing Chip Detection Efficiency Using the Lightweight Van-YOLOv8 Network

    Meng Huang, Honglei Wei*, Xianyi Zhai

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 531-547, 2024, DOI:10.32604/cmc.2024.048510

    Abstract In pursuit of cost-effective manufacturing, enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips. To ensure consistent chip orientation during packaging, a circular marker on the front side is employed for pin alignment following successful functional testing. However, recycled chips often exhibit substantial surface wear, and the identification of the relatively small marker proves challenging. Moreover, the complexity of generic target detection algorithms hampers seamless deployment. Addressing these issues, this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips, termed Van-YOLOv8. Initially, to alleviate the influence of diminutive, low-resolution… More >

  • Open Access

    ARTICLE

    YOLOv5ST: A Lightweight and Fast Scene Text Detector

    Yiwei Liu1, Yingnan Zhao1,*, Yi Chen1, Zheng Hu1, Min Xia2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 909-926, 2024, DOI:10.32604/cmc.2024.047901

    Abstract Scene text detection is an important task in computer vision. In this paper, we present YOLOv5 Scene Text (YOLOv5ST), an optimized architecture based on YOLOv5 v6.0 tailored for fast scene text detection. Our primary goal is to enhance inference speed without sacrificing significant detection accuracy, thereby enabling robust performance on resource-constrained devices like drones, closed-circuit television cameras, and other embedded systems. To achieve this, we propose key modifications to the network architecture to lighten the original backbone and improve feature aggregation, including replacing standard convolution with depth-wise convolution, adopting the C2 sequence module in place More >

  • Open Access

    ARTICLE

    MSC-YOLO: Improved YOLOv7 Based on Multi-Scale Spatial Context for Small Object Detection in UAV-View

    Xiangyan Tang1,2, Chengchun Ruan1,2,*, Xiulai Li2,3, Binbin Li1,2, Cebin Fu1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 983-1003, 2024, DOI:10.32604/cmc.2024.047541

    Abstract Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in the field of small object detection on unmanned aerial vehicles (UAVs). This task is challenging due to variations in UAV flight altitude, differences in object scales, as well as factors like flight speed and motion blur. To enhance the detection efficacy of small targets in drone aerial imagery, we propose an enhanced You Only Look Once version 7 (YOLOv7) algorithm based on multi-scale spatial context. We build the MSC-YOLO model, which incorporates an additional prediction head, denoted as P2, to… More >

  • Open Access

    ARTICLE

    SAM Era: Can It Segment Any Industrial Surface Defects?

    Kechen Song1,2,*, Wenqi Cui2, Han Yu1, Xingjie Li1, Yunhui Yan2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3953-3969, 2024, DOI:10.32604/cmc.2024.048451

    Abstract Segment Anything Model (SAM) is a cutting-edge model that has shown impressive performance in general object segmentation. The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model. Due to its superior performance in general object segmentation, it quickly gained attention and interest. This makes SAM particularly attractive in industrial surface defect segmentation, especially for complex industrial scenes with limited training data. However, its segmentation ability for specific industrial scenes remains unknown. Therefore, in this work, we select three representative and complex industrial surface defect detection scenarios, namely strip steel More >

  • Open Access

    ARTICLE

    Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer

    Changfeng Feng1, Chunping Wang2, Dongdong Zhang1, Renke Kou1, Qiang Fu1,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3993-4013, 2024, DOI:10.32604/cmc.2024.048351

    Abstract Transformer-based models have facilitated significant advances in object detection. However, their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle (UAV) imagery. Addressing these limitations, we propose a hybrid transformer-based detector, H-DETR, and enhance it for dense small objects, leading to an accurate and efficient model. Firstly, we introduce a hybrid transformer encoder, which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently. Furthermore, we propose two novel strategies to enhance detection performance without incurring additional inference… More >

Displaying 11-20 on page 2 of 134. Per Page