Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access


    CO2 and Cost-Based Optimum Design of Sustainable Metakaolin-Modified Concrete

    Xiaoyong Wang*

    Journal of Renewable Materials, Vol.10, No.9, pp. 2431-2450, 2022, DOI:10.32604/jrm.2022.020829

    Abstract Metakaolin is a highly reactive pozzolanic material that is widely utilized for enhancing the performance of concrete. This study offers a framework for the mixture design of sustainable metakaolin-modified concrete with low CO2 emissions and low costs. Different design strengths after 28 days are first formulated, with values such as 30, 40, 50, and 60 MPa. A genetic algorithm is then used to determine the optimal mixtures. Minimized CO2 and cost are set as the aims of the genetic algorithm. The strength of the concrete, its workability (slump), and carbonation service life with climate change are set as constraints of the… More >

  • Open Access


    Design of Multi-Coupled Laminates with Extension-Twisting Coupling for Application in Adaptive Structures

    Da Cui1,2, Daokui Li1,2,*, Shiming Zhou1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 415-441, 2022, DOI:10.32604/cmes.2022.017368

    Abstract The multiple coupling of composite laminates has a unique advantage in improving the macro mechanical properties of composite structures. A total of three hygro-thermally stable multi-coupled laminates with extension-twisting coupling were presented, which were conducive to the formation of passive adaptive structures. Then, the multi-coupled laminates were used to design the bending-twisting coupled box structure, in which the configuration of laminate and box structure could be extended to variable cross-section configuration. The optimal design of stacking sequence was realized, the optimization objectives of which were to maximize bending-twisting coupling of box structure and extension-twisting coupling of laminate, respectively. The effects… More >

  • Open Access


    Recycled Aggregate Pervious Concrete: Analysis of Influence of Water-Cement Ratio and Fly Ash under Single Action and Optimal Design of Mix Proportion

    Shoukai Chen1,4,5, Chunpeng Xing1, Mengdie Zhao2,*, Junfeng Zhang3, Lunyan Wang1,4,5,*, Qidong He6

    Journal of Renewable Materials, Vol.10, No.3, pp. 799-819, 2022, DOI:10.32604/jrm.2022.017285


    Pervious concrete is recommended, which is of great benefit to the ecological environment and human living environment. In this paper, the influences of five water-cement ratios and four fly ash contents to replace the cement by mass with a water-cement ratio of 0.30 on the properties of Recycled Aggregate Pervious Concrete (RAPC) were studied. Following this, based on the Grey relational-Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) optimization method, the strength, permeability, abrasion loss rate, and material costs of RAPC were adopted as evaluation indices to establish a mix proportion optimization model. The results show that… More >

  • Open Access


    Modelling and Optimal Design of Hybrid Power System Photovoltaic/Solid Oxide Fuel Cell for a Mediterranean City

    Bachir Melzi1, Nesrine Kefif2, Mamdouh El Haj Assad3,*, Haleh Delnava4, Abdulkadir Hamid5

    Energy Engineering, Vol.118, No.6, pp. 1767-1781, 2021, DOI:10.32604/EE.2021.017270

    Abstract This work presents a hybrid power system consisting of photovoltaic and solid oxide fuel cell (PV-SOFC) for electricity production and hydrogen production. The simulation of this hybrid system is adjusted for Bou-Zedjar city in north Algeria. Homer software was used for this simulation to calculate the power output and the total net present cost. The method used depends on the annual average monthly values of clearness index and radiation for which the energy contributions are determined for each component of PV/SOFC hybrid system. The economic study is more important criterion in the proposed hybrid system, and the results show that… More >

  • Open Access


    Hybrid Metamodel—NSGA-III—EDAS Based Optimal Design of Thin Film Coatings

    Kamlendra Vikram1, Uvaraja Ragavendran2, Kanak Kalita1,*, Ranjan Kumar Ghadai3, Xiao-Zhi Gao4

    CMC-Computers, Materials & Continua, Vol.66, No.2, pp. 1771-1784, 2021, DOI:10.32604/cmc.2020.013946

    Abstract In this work, diamond-like carbon (DLC) thin film coatings are deposited on silicon substrates by using plasma-enhanced chemical vapour deposition (PECVD) technique. By varying the hydrogen (H2) flow rate, CH4−Argon (Ar) flow rate and deposition temperature (Td) as per a Box-Behnken experimental design (BBD), 15 DLC deposition experiments are carried out. The Young’s modulus (E) and the coefficient of friction (COF) for the DLCs are measured. By using a second-order polynomial regression approach, two metamodels are built for E and COF, that establish them as functions of H2 flow rate, CH4-Ar flow rate and Td. A non-dominated sorting genetic algorithm… More >

  • Open Access


    Optimal Design of Computer Experiments for Metamodel Generation Using I-OPTTM

    Selden B. Crary1, Peter Cousseau2, David Armstrong1, David M. Woodcock3, Eva H. Mok1, Olivier Dubochet4, Philippe Lerch4, Philippe Renaud2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 127-140, 2000, DOI:10.3970/cmes.2000.001.127

    Abstract We present a new and unique software capability for finding statistical optimal designs of deterministic experiments on continuous cuboidal regions. The objective function for the design optimization is the minimization of the expected integrated mean squared error of prediction of the metamodel that will be found, subsequent to the running of the computer simulations, using the best linear unbiased predictor (BLUP). The assumed response-model function includes an unknown, stochastic term, Z. We prove that this criterion, which we name IZ-optimality, is equivalent to I-optimality for non-deterministic experiments, in the limit of zero correlations among the Z's for different inputs. An… More >

  • Open Access


    Design and Fabrication of an Electrostatic Variable Gap Comb Drive in Micro-Electro-Mechanical Systems

    Wenjing Ye1, Subrata Mukherjee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 111-120, 2000, DOI:10.3970/cmes.2000.001.111

    Abstract Polynomial driving-force comb drives are designed using numerical simulation. The electrode shapes are obtained using the indirect boundary element method. Variable gap comb drives that produce combinations of linear, quadratic, and cubic driving-force profiles are synthesized. This inverse problem is solved by an optimization procedure. Sensitivity analysis is carried out by the direct differentiation approach (DDA) in order to compute design sensitivity coefficients (DSCs) of force profiles with respect to parameters that define the shapes of the fingers of a comb drive. The DSCs are then used to drive iterative optimization procedures. Designs of variable gap comb drives with linear,… More >

Displaying 1-10 on page 1 of 7. Per Page  

Share Link