Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (302)
  • Open Access

    ARTICLE

    An Enhanced Exploitation Artificial Bee Colony Algorithm in Automatic Functional Approximations

    Peizhong Liu1, Xiaofang Liu1, Yanming Luo2, Yongzhao Du1, Yulin Fan1, Hsuan‐Ming Feng3

    Intelligent Automation & Soft Computing, Vol.25, No.2, pp. 385-394, 2019, DOI:10.31209/2019.100000100

    Abstract Aiming at the drawback of artificial bee colony algorithm (ABC) with slow convergence speed and weak exploitation capacity, an enhanced exploitation artificial bee colony algorithm is proposed, EeABC for short. Firstly, a generalized opposition-based learning strategy (GOBL) is employed when initial population is produced for obtaining an evenly distributed population. Subsequently, inspired by the differential evolution (DE), two new search equations are proposed, where the one is guided by the best individuals in the next generation to strengthen exploitation and the other is to avoid premature convergence. Meanwhile, the distinction between the employed bee and More >

  • Open Access

    ARTICLE

    Feature Selection with a Local Search Strategy Based on the Forest Optimization Algorithm

    Tinghuai Ma1,*, Honghao Zhou1, Dongdong Jia1, Abdullah Al-Dhelaan2, Mohammed Al-Dhelaan2, Yuan Tian3

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 569-592, 2019, DOI:10.32604/cmes.2019.07758

    Abstract Feature selection has been widely used in data mining and machine learning. Its objective is to select a minimal subset of features according to some reasonable criteria so as to solve the original task more quickly. In this article, a feature selection algorithm with local search strategy based on the forest optimization algorithm, namely FSLSFOA, is proposed. The novel local search strategy in local seeding process guarantees the quality of the feature subset in the forest. Next, the fitness function is improved, which not only considers the classification accuracy, but also considers the size of More >

  • Open Access

    ARTICLE

    Analysis of OSA Syndrome from PPG Signal Using CART-PSO Classifier with Time Domain and Frequency Domain Features

    N. Kins Burk Sunil1, *, R. Ganesan2, B. Sankaragomathi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 351-375, 2019, DOI:10.31614/cmes.2018.04484

    Abstract Obstructive Sleep Apnea (OSA) is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation. The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea (SA) activity. In the proposed method, the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted. These features are applied to the Classification and Regression Tree (CART)-Particle Swarm Optimization (PSO) classifier which classifies the More >

  • Open Access

    ARTICLE

    A Novel Image Categorization Strategy Based on Salp Swarm Algorithm to Enhance Efficiency of MRI Images

    Mohammad Behrouzian Nejad1, Mohammad Ebrahim Shiri Ahmadabadi1, 2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.1, pp. 185-205, 2019, DOI:10.32604/cmes.2019.01838

    Abstract The main target of this paper is presentation of an efficient method for MRI images classification so that it can be used to diagnose patients and non-patients. Image classification is one of the prominent subset topics of machine learning and data mining that the most important image technique is the auto-categorization of images. MRI images with high resolution and appropriate accuracy allow physicians to decide on the diagnosis of various diseases and treat them. The auto categorization of MRI images toward diagnosing brain diseases has been being used to accurately diagnose hospitals, clinics, physicians and… More >

  • Open Access

    ARTICLE

    Directional Antenna Intelligent Coverage Method Based on Traversal Optimization Algorithm

    Jialuan He1,2, Zirui Xing2, Rong Hu2, Jing Qiu3,*, Shen Su3,*, Yuhan Chai3, Yue Wu4

    CMC-Computers, Materials & Continua, Vol.60, No.2, pp. 527-544, 2019, DOI:10.32604/cmc.2019.05586

    Abstract Wireless broadband communication is widely used in maneuver command communications systems in many fields, such as military operations, counter-terrorism and disaster relief. How to reasonably formulate the directional antenna coverage strategy according to the mobile terminal dynamic distribution and guide the directional antenna dynamic coverage becomes a practical research topic. In many applications, a temporary wireless boardband base station is required to support wireless signal communications between many terminals from nearby vehicles and staffs. It is therefore important to efficiently set directional antenna while ensuring large enough coverage over dynamically distributed terminals. The wireless broadband More >

  • Open Access

    ARTICLE

    Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix: A Case Study on Mechanical Application

    Shang Zhang1, *, Seyedmehdi Karimi2, Shahaboddin Shamshirband3, 4, *, Amir Mosavi5,6

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 567-583, 2019, DOI:10.32604/cmc.2019.02795

    Abstract In the process of eliminating variables in a symbolic polynomial system, the extraneous factors are referred to the unwanted parameters of resulting polynomial. This paper aims at reducing the number of these factors via optimizing the size of Dixon matrix. An optimal configuration of Dixon matrix would lead to the enhancement of the process of computing the resultant which uses for solving polynomial systems. To do so, an optimization algorithm along with a number of new polynomials is introduced to replace the polynomials and implement a complexity analysis. Moreover, the monomial multipliers are optimally positioned More >

  • Open Access

    ARTICLE

    Improved Teaching-Learning-Based Optimization Algorithm for Modeling NOX Emissions of a Boiler

    Xia Li1,2, Peifeng Niu1,*, Jianping Liu2, Qing Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.1, pp. 29-57, 2018, DOI:10.31614/cmes.2018.04020

    Abstract An improved teaching-learning-based optimization (I-TLBO) algorithm is proposed to adjust the parameters of extreme learning machine with parallel layer perception (PELM), and a well-generalized I-TLBO-PELM model is obtained to build the model of NOX emissions of a boiler. In the I-TLBO algorithm, there are four major highlights. Firstly, a quantum initialized population by using the qubits on Bloch sphere replaces a randomly initialized population. Secondly, two kinds of angles in Bloch sphere are generated by using cube chaos mapping. Thirdly, an adaptive control parameter is added into the teacher phase to speed up the convergent speed. More >

  • Open Access

    ARTICLE

    New Optimization Algorithms for Structural Reliability Analysis

    S.R. Santos1, L.C. Matioli2, A.T. Beck3

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.1, pp. 23-56, 2012, DOI:10.3970/cmes.2012.083.023

    Abstract Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented.… More >

  • Open Access

    ARTICLE

    A Nonlinear Optimization Algorithm for Lower Bound Limit and Shakedown Analysis

    G. Gang1, Y.H. Liu2

    CMC-Computers, Materials & Continua, Vol.20, No.3, pp. 251-272, 2010, DOI:10.3970/cmc.2010.020.251

    Abstract Limit and shakedown analysis theorems are the theories of classical plasticity for the direct computation of the load-carrying capacity under proportional and varying loads. Based on Melan's theorem, a solution procedure for lower bound limit and shakedown analysis of three-dimensional (3D) structures is established making use of the finite element method (FEM). The self-equilibrium stress fields are expressed by linear combination of several basic self-equilibrium stress fields with parameters to be determined. These basic self-equilibrium stress fields are elastic responses of the body to imposed permanent strains obtained through elastic-plastic incremental analysis by the three-dimensional More >

  • Open Access

    ARTICLE

    Variational formulation and Nonsmooth Optimization Algorithms in Elastostatic Contact Problems for Cracked Body

    V.V. Zozulya1

    CMES-Computer Modeling in Engineering & Sciences, Vol.42, No.3, pp. 187-216, 2009, DOI:10.3970/cmes.2009.042.187

    Abstract The mathematical statement for contact problem with unilateral restrictions and friction is done in classical and weak forms. Different variational formulation of unilateral contact problems with friction based on principles of virtual displacements and virtual stresses are considered. Especially boundary variational functionals that are used with boundary integral equations have been established. Nonsmooth optimization algorithms of Udzawa type for solution of unilateral contact problem with friction have been developed. Some theoretical results of existence and uniqueness in elastostatic unilateral contact problem with friction are outlined. More >

Displaying 291-300 on page 30 of 302. Per Page