Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (187)
  • Open Access

    ARTICLE

    Optimization Design of RC Ribbed Floor System Using Eagle Strategy with Particle Swarm Optimization

    Jiejiang Zhu1, *, Bolun Zhou1

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 365-383, 2020, DOI:10.32604/cmc.2020.06655

    Abstract The eagle strategy algorithm is combined with particle swarm optimization in this paper. The new algorithm, denoted as the ES-PSO, is implemented by interfacing Etabs structural analysis codes. ES-PSO is used to optimize the RC ribbed floor system, including floor and underground garage roof. By considering the effects of reinforcement, the principle of virtual work is applied to calculate the deflections of components. Construction cost is taken as the objective function and the constraint conditions are required to satisfy. Accordingly, the optimal layout, the optimal sections of the beams and slabs and the corresponding reinforcements More >

  • Open Access

    ARTICLE

    The Implementation of Optimization Methods for Contrast Enhancement

    Ahmet Elbir1,∗, Hamza Osman Ilhan1, Nizamettin Aydin1

    Computer Systems Science and Engineering, Vol.34, No.2, pp. 101-107, 2019, DOI:10.32604/csse.2019.34.101

    Abstract The performances of the multivariate techniques are directly related to the variable selection process, which is time consuming and requires resources for testing each possible parameter to achieve the best results. Therefore, optimization methods for variable selection process have been proposed in the literature to find the optimal solution in short time by using less system resources. Contrast enhancement is the one of the most important and the parameter dependent image enhancement technique. In this study, two optimization methods are employed for the variable selection for the contrast enhancement technique. Particle swarm optimization (PSO) and More >

  • Open Access

    ARTICLE

    Adaptive Image Enhancement Using Hybrid Particle Swarm Optimization and Watershed Segmentation

    N. Mohanapriya1, Dr. B. Kalaavathi2

    Intelligent Automation & Soft Computing, Vol.25, No.4, pp. 663-672, 2019, DOI:10.31209/2018.100000041

    Abstract Medical images are obtained straight from the medical acquisition devices so that, the image quality becomes poor and may contain noises. Low contrast and poor quality are the major issues in the production of medical images. Medical imaging enhancement technology gives way to solve these issues; it helps the doctors to see the interior portions of the body for early diagnosis, also it improves the features the visual aspects of an image for a right diagnosis. This paper proposes a new blend of Particle Swarm Optimization (PSO) and Accelerated Particle Swarm Optimization (APSO) called Hybrid… More >

  • Open Access

    ARTICLE

    BDI Agent and QPSO-based Parameter Optimization for a Marine Generator Excitation Controller

    Wei Zhang1, Weifeng Shi2, Bing Sun3

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 423-431, 2019, DOI:10.31209/2018.100000045

    Abstract An intelligent optimization algorithm for a marine generator excitation controller is proposed to improve dynamic performance of shipboard power systems. This algorithm combines a belief–desire–intention agent with a quantum-behaved particle swarm optimization (QPSO) algorithm to optimize a marine generator excitation controller. The shipboard zonal power system is simulated under disturbance due to load change or severe fault. The results show that the proposed optimization algorithm can improve marine generator stability compared with conventional excitation controllers under various operating conditions. Moreover, the proposed intelligent algorithm is highly robust because its performance is insensitive to the accuracy More >

  • Open Access

    ARTICLE

    Modified PSO Algorithm on Recurrent Fuzzy Neural Network for System Identification

    Chung Wen Hung, Wei Lung Mao, Han Yi Huang

    Intelligent Automation & Soft Computing, Vol.25, No.2, pp. 329-341, 2019, DOI:10.31209/2019.100000093

    Abstract Nonlinear system modeling and identification is the one of the most important areas in engineering problem. The paper presents the recurrent fuzzy neural network (RFNN) trained by modified particle swarm optimization (MPSO) methods for identifying the dynamic systems and chaotic observation prediction. The proposed MPSO algorithms mainly modify the calculation formulas of inertia weights. Two MPSOs, namely linear decreasing particle swarm optimization (LDPSO) and adaptive particle swarm optimization (APSO) are developed to enhance the convergence behavior in learning process. The RFNN uses MPSO based method to tune the parameters of the membership functions, and it More >

  • Open Access

    ARTICLE

    CPAC: Energy-Efficient Algorithm for IoT Sensor Networks Based on Enhanced Hybrid Intelligent Swarm

    Qi Wang1,*, Wei Liu1, Hualong Yu1, Shang Zheng1, Shang Gao1, Fabrizio Granelli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.1, pp. 83-103, 2019, DOI:10.32604/cmes.2019.06897

    Abstract The wireless sensor network (WSN) is widely employed in the application scenarios of the Internet of Things (IoT) in recent years. Extending the lifetime of the entire system had become a significant challenge due to the energy-constrained fundamental limits of sensor nodes on the perceptual layer of IoT. The clustering routing structures are currently the most popular solution, which can effectively reduce the energy consumption of the entire network and improve its reliability. This paper introduces an enhanced hybrid intelligential algorithm based on particle swarm optimization (PSO) and ant colony optimization (ACO) method. The enhanced More >

  • Open Access

    ARTICLE

    Analysis of OSA Syndrome from PPG Signal Using CART-PSO Classifier with Time Domain and Frequency Domain Features

    N. Kins Burk Sunil1, *, R. Ganesan2, B. Sankaragomathi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 351-375, 2019, DOI:10.31614/cmes.2018.04484

    Abstract Obstructive Sleep Apnea (OSA) is a respiratory syndrome that occurs due to insufficient airflow through the respiratory or respiratory arrest while sleeping and sometimes due to the reduced oxygen saturation. The aim of this paper is to analyze the respiratory signal of a person to detect the Normal Breathing Activity and the Sleep Apnea (SA) activity. In the proposed method, the time domain and frequency domain features of respiration signal obtained from the PPG device are extracted. These features are applied to the Classification and Regression Tree (CART)-Particle Swarm Optimization (PSO) classifier which classifies the More >

  • Open Access

    ARTICLE

    Improved Particle Swarm Optimization for Selection of Shield Tunneling Parameter Values

    Gongyu Hou1, Zhedong Xu1,*, Xin Liu1, Cong Jin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 317-337, 2019, DOI:10.31614/cmes.2019.04693

    Abstract This article proposes an exponential adjustment inertia weight immune particle swarm optimization (EAIW-IPSO) to enhance the accuracy and reliability regarding the selection of shield tunneling parameter values. According to the iteration changes and the range of inertia weight in particle swarm optimization algorithm (PSO), the inertia weight is adjusted by the form of exponential function. Meanwhile, the self-regulation mechanism of the immune system is combined with the PSO. 12 benchmark functions and the realistic cases of shield tunneling parameter value selection are utilized to demonstrate the feasibility and accuracy of the proposed EAIW-IPSO algorithm. Comparison More >

  • Open Access

    ARTICLE

    An Improved Unsupervised Image Segmentation Method Based on Multi-Objective Particle Swarm Optimization Clustering Algorithm

    Zhe Liu1,2,*, Bao Xiang1,3, Yuqing Song1, Hu Lu1, Qingfeng Liu1

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 451-461, 2019, DOI:10.32604/cmc.2019.04069

    Abstract Most image segmentation methods based on clustering algorithms use single-objective function to implement image segmentation. To avoid the defect, this paper proposes a new image segmentation method based on a multi-objective particle swarm optimization (PSO) clustering algorithm. This unsupervised algorithm not only offers a new similarity computing approach based on electromagnetic forces, but also obtains the proper number of clusters which is determined by scale-space theory. It is experimentally demonstrated that the applicability and effectiveness of the proposed multi-objective PSO clustering algorithm. More >

  • Open Access

    ARTICLE

    Robot Pose Estimation Based on Visual Information and Particle Swarm Optimization

    Carlos Lopez-Franco1, Javier Gomez-Avila2, Nancy Arana-Daniel3, Alma Y. Alanis

    Intelligent Automation & Soft Computing, Vol.24, No.2, pp. 431-442, 2018, DOI:10.31209/2018.100000000

    Abstract This paper presents a method for 3D pose estimation using visual information and a soft-computing algorithm. The algorithm uses quaternions to represent rotations, and Particle Swarm Optimization to estimate such quaternion. The rotation estimation problem is cast as a minimization problem, which finds the best quaternion for the given data using the PSO algorithm. With this technique, the algorithm always returns a valid quaternion, and therefore a valid rotation. During the estimation process, the algorithm is able to detect and reject outliers. The simulations and experimental results show the robustness of algorithm against noise and More >

Displaying 171-180 on page 18 of 187. Per Page