Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    REVIEW

    Survey on Deep Learning Approaches for Detection of Email Security Threat

    Mozamel M. Saeed1,*, Zaher Al Aghbari2

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 325-348, 2023, DOI:10.32604/cmc.2023.036894 - 31 October 2023

    Abstract Emailing is among the cheapest and most easily accessible platforms, and covers every idea of the present century like banking, personal login database, academic information, invitation, marketing, advertisement, social engineering, model creation on cyber-based technologies, etc. The uncontrolled development and easy access to the internet are the reasons for the increased insecurity in email communication. Therefore, this review paper aims to investigate deep learning approaches for detecting the threats associated with e-mail security. This study compiles the literature related to the deep learning methodologies, which are applicable for providing safety in the field of cyber… More >

  • Open Access

    ARTICLE

    Detecting Phishing Using a Multi-Layered Social Engineering Framework

    Kofi Sarpong Adu-Manu*, Richard Kwasi Ahiable

    Journal of Cyber Security, Vol.5, pp. 13-32, 2023, DOI:10.32604/jcs.2023.043359 - 19 October 2023

    Abstract As businesses develop and expand with a significant volume of data, data protection and privacy become increasingly important. Research has shown a tremendous increase in phishing activities during and after COVID-19. This research aimed to improve the existing approaches to detecting phishing activities on the internet. We designed a multi-layered phish detection algorithm to detect and prevent phishing applications on the internet using URLs. In the algorithm, we considered technical dimensions of phishing attack prevention and mitigation on the internet. In our approach, we merge, Phishtank, Blacklist, Blocklist, and Whitelist to form our framework. A More >

  • Open Access

    ARTICLE

    Modelling an Efficient URL Phishing Detection Approach Based on a Dense Network Model

    A. Aldo Tenis*, R. Santhosh

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2625-2641, 2023, DOI:10.32604/csse.2023.036626 - 28 July 2023

    Abstract The social engineering cyber-attack is where culprits mislead the users by getting the login details which provides the information to the evil server called phishing. The deep learning approaches and the machine learning are compared in the proposed system for presenting the methodology that can detect phishing websites via Uniform Resource Locator (URLs) analysis. The legal class is composed of the home pages with no inclusion of login forms in most of the present modern solutions, which deals with the detection of phishing. Contrarily, the URLs in both classes from the login page due, considering… More >

  • Open Access

    ARTICLE

    Assessing Secure OpenID-Based EAAA Protocol to Prevent MITM and Phishing Attacks in Web Apps

    Muhammad Bilal1,*, Sandile C. Shongwe2, Abid Bashir3, Yazeed Y. Ghadi4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4713-4733, 2023, DOI:10.32604/cmc.2023.037071 - 29 April 2023

    Abstract To secure web applications from Man-In-The-Middle (MITM) and phishing attacks is a challenging task nowadays. For this purpose, authentication protocol plays a vital role in web communication which securely transfers data from one party to another. This authentication works via OpenID, Kerberos, password authentication protocols, etc. However, there are still some limitations present in the reported security protocols. In this paper, the presented anticipated strategy secures both Web-based attacks by leveraging encoded emails and a novel password form pattern method. The proposed OpenID-based encrypted Email’s Authentication, Authorization, and Accounting (EAAA) protocol ensure security by relying… More >

  • Open Access

    ARTICLE

    Detection of Phishing in Internet-of-Things Using Hybrid Deep Belief Network

    S. Ashwini*, S. Magesh Kumar

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3043-3056, 2023, DOI:10.32604/iasc.2023.034551 - 15 March 2023

    Abstract Increase in the use of internet of things owned devices is one of the reasons for increased network traffic. While connecting the smart devices with publicly available network many kinds of phishing attacks are able to enter into the mobile devices and corrupt the existing system. The Phishing is the slow and resilient attack stacking techniques probe the users. The proposed model is focused on detecting phishing attacks in internet of things enabled devices through a robust algorithm called Novel Watch and Trap Algorithm (NWAT). Though Predictive mapping, Predictive Validation and Predictive analysis mechanism is… More >

  • Open Access

    ARTICLE

    Machine Learning Techniques for Detecting Phishing URL Attacks

    Diana T. Mosa1,2, Mahmoud Y. Shams3,*, Amr A. Abohany2, El-Sayed M. El-kenawy4, M. Thabet5

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1271-1290, 2023, DOI:10.32604/cmc.2023.036422 - 06 February 2023

    Abstract Cyber Attacks are critical and destructive to all industry sectors. They affect social engineering by allowing unapproved access to a Personal Computer (PC) that breaks the corrupted system and threatens humans. The defense of security requires understanding the nature of Cyber Attacks, so prevention becomes easy and accurate by acquiring sufficient knowledge about various features of Cyber Attacks. Cyber-Security proposes appropriate actions that can handle and block attacks. A phishing attack is one of the cybercrimes in which users follow a link to illegal websites that will persuade them to divulge their private information. One… More >

  • Open Access

    ARTICLE

    Intelligent Deep Learning Based Cybersecurity Phishing Email Detection and Classification

    R. Brindha1, S. Nandagopal2, H. Azath3, V. Sathana4, Gyanendra Prasad Joshi5, Sung Won Kim6,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5901-5914, 2023, DOI:10.32604/cmc.2023.030784 - 28 December 2022

    Abstract Phishing is a type of cybercrime in which cyber-attackers pose themselves as authorized persons or entities and hack the victims’ sensitive data. E-mails, instant messages and phone calls are some of the common modes used in cyberattacks. Though the security models are continuously upgraded to prevent cyberattacks, hackers find innovative ways to target the victims. In this background, there is a drastic increase observed in the number of phishing emails sent to potential targets. This scenario necessitates the importance of designing an effective classification model. Though numerous conventional models are available in the literature for… More >

  • Open Access

    ARTICLE

    Optimal Deep Belief Network Enabled Cybersecurity Phishing Email Classification

    Ashit Kumar Dutta1,*, T. Meyyappan2, Basit Qureshi3, Majed Alsanea4, Anas Waleed Abulfaraj5, Manal M. Al Faraj1, Abdul Rahaman Wahab Sait6

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2701-2713, 2023, DOI:10.32604/csse.2023.028984 - 01 August 2022

    Abstract Recently, developments of Internet and cloud technologies have resulted in a considerable rise in utilization of online media for day to day lives. It results in illegal access to users’ private data and compromises it. Phishing is a popular attack which tricked the user into accessing malicious data and gaining the data. Proper identification of phishing emails can be treated as an essential process in the domain of cybersecurity. This article focuses on the design of biogeography based optimization with deep learning for Phishing Email detection and classification (BBODL-PEDC) model. The major intention of the… More >

  • Open Access

    ARTICLE

    Phish Block: A Blockchain Framework for Phish Detection in Cloud

    R. N. Karthika*, C. Valliyammai, M. Naveena

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 777-795, 2023, DOI:10.32604/csse.2023.024086 - 01 June 2022

    Abstract The data in the cloud is protected by various mechanisms to ensure security aspects and user’s privacy. But, deceptive attacks like phishing might obtain the user’s data and use it for malicious purposes. In Spite of much technological advancement, phishing acts as the first step in a series of attacks. With technological advancements, availability and access to the phishing kits has improved drastically, thus making it an ideal tool for the hackers to execute the attacks. The phishing cases indicate use of foreign characters to disguise the original Uniform Resource Locator (URL), typosquatting the popular… More >

  • Open Access

    REVIEW

    Phishing Attacks in Social Engineering: A Review

    Kofi Sarpong Adu-Manu*, Richard Kwasi Ahiable, Justice Kwame Appati, Ebenezer Essel Mensah

    Journal of Cyber Security, Vol.4, No.4, pp. 239-267, 2022, DOI:10.32604/jcs.2023.041095 - 10 August 2023

    Abstract Organisations closed their offices and began working from home online to prevent the spread of the COVID-19 virus. This shift in work culture coincided with increased online use during the same period. As a result, the rate of cybercrime has skyrocketed. This study examines the approaches, techniques, and countermeasures of Social Engineering and phishing in this context. The study discusses recent trends in the existing approaches for identifying phishing assaults. We explore social engineering attacks, categorise them into types, and offer both technical and social solutions for countering phishing attacks which makes this paper different More >

Displaying 11-20 on page 2 of 30. Per Page