Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (71)
  • Open Access

    ARTICLE

    Synthesis of Functional Photoactive Polysilane Copolymers with Disperse Yellow 7 Methacrylate and Study of their Optical, Photophysical and Thermal Properties

    KM. MEENU, DIBYENDU S. BAG*, REKHA LAGARKHAa

    Journal of Polymer Materials, Vol.36, No.3, pp. 275-292, 2019, DOI:10.32381/JPM.2019.36.03.7

    Abstract Functional photoactive polysilane copolymers of poly(methylphenylsilane) (PMPS) and disperse yellow 7 methacrylate (DY7MA) were synthesized using UV-technique. In the same manner functional polysilane copolymers of poly(methylphenylsilane-co-dimethylsilane) (CPS) and disperse yellow 7 methacrylate (DY7MA) were also synthesized. By the UV irradiation polysilanes (PMPS and CPS) give rise to silyl macroradicals which initiate the polymerization of photoactive monomer (DY7MA). The synthesized samples were characterized by FTIR, NMR, and UV-Vis spectroscopy. The molar mass of synthesized photoactive functional polysilane copolymers is of order of 103 gm/mol. They exhibited multimodal optical and photoluminescence functional properties. Optical absorbance was observed… More >

  • Open Access

    ARTICLE

    Novel Sugar Based Acrylate: Synthesis, Characterization and Polymerization

    MERYEM KORUYUCUa, FEHMi SALTANa,b, GÖKHAN KÖKa, HAKAN AKATa, YEŞIM SALMANa,*

    Journal of Polymer Materials, Vol.36, No.3, pp. 207-216, 2019, DOI:10.32381/JPM.2019.36.03.1

    Abstract The present study has demonstrated that novel acrylic glycopolymers are successfully prepared by using monosaccharides containing an acrylate group (9-12). For this purpose, sugar based acrylate monomers were synthesized via ring opening method (Method B) and homopolymerization of this sugar oxypropylacrylates was performed using free radical polymerization. The characterization of all the monomers and polymers were verified by 1HNMR, 13CNMR, FTIR and GPC techniques. The Glass transition temperatures and thermal characteristics of the polymers were also analyzed by using DSC and TG techniques. The thermal stability of prepared polymers have changed with the stereochemistry of the More >

  • Open Access

    REVIEW

    Recent Advancement in Comb-like Polymers: A Review

    AMRITA SHARMA, P. P. PANDE

    Journal of Polymer Materials, Vol.36, No.2, pp. 175-194, 2019, DOI:10.32381/JPM.2019.36.02.6

    Abstract ‘Comb-like polymers’ are a special class of polymers. These are consisting of two types of chains, first one is the backbone chain and second is long side chains. The structure of such a polymer is very similar to hair comb. Usually, every monomer unit in the backbone has a long n-alkyl side chain. Comb like polymers have an intrinsic ability towards forming ordered structure. Now-a-days, these polymers find wide range of applications because of their excellent physicochemical properties. Some applications are in preparation of polysoaps (polymeric disinfectants), as dispersing agent for ink and paints, textile More >

  • Open Access

    ARTICLE

    Systematically Monitoring, Relational Database and Technology Roadmapping for Trends and Innovation Opportunities in Biopolymers

    Selma B. Jaconis1,*, Augusto T. Morita2, Paulo L. A. Coutinho3, Suzana Borschiver1

    Journal of Renewable Materials, Vol.7, No.11, pp. 1221-1230, 2019, DOI:10.32604/jrm.2019.00025 - 14 July 2021

    Abstract In recent years environmental and sustainability concerns have impacted the global chemical industry and instituted a rush to produce products from renewable raw materials. This dynamic, complex and turbulent organizational scenario, around themes touching on the issue of sustainable development model, was created involving a large number of different actors: chemical/petrochemical industries, agroindustry companies, oil/gas companies, brand owners and end users, biotechnology startups, governments, universities and society. This paper proposed the application of a structured and dynamic method of technological prediction for biopolymers in three levels: systematic monitoring process, relational database and the “alive” Technology More >

  • Open Access

    ARTICLE

    Performance Comparison of Commercial and Home-Made Lipases for Synthesis of Poly(δ-Valerolactone) Homopolymers

    Cansu Ulker*, Zeynep Gok, Yuksel Guvenilir

    Journal of Renewable Materials, Vol.7, No.4, pp. 335-343, 2019, DOI:10.32604/jrm.2019.03819

    Abstract Novozyme 435, which is the commercially available immobilized form of Candida antarctica lipase B, has been successfully conducted ring opening polymerization of lactones in organic solvents. In this paper, it was aimed to introduce an alternative biocatalyst for Novozyme 435. Candida antarctica lipase B immobilized onto rice husk ashes via physical adsorption (with a specific activity of 4.4 U/mg) was prepared in previous studies and used as a biocatalyst for poly(δ-valerolactone) synthesis in the present work. Polymerization reactions were proceeded at various reaction temperatures and periods via both two immobilized enzyme preparations. The resulting products More >

  • Open Access

    ARTICLE

    Poly (Butylene Adipate-Co-Terephthalate) and Poly (Ɛ-Caprolactone) and Their Bionanocomposites with Cellulose Nanocrystals: Thermo-Mechanical Properties and Cell Viability Study

    Marcia Cristina Branciforti1,*, Caroline Faria Bellani2, Carolina Lipparelli Morelli2, Alice Ferrand3, Nadia Benkirane-Jessel3, Rosario Elida Suman Bretas2

    Journal of Renewable Materials, Vol.7, No.3, pp. 269-277, 2019, DOI:10.32604/jrm.2019.01833

    Abstract Although nanocomposites have recently attracted special interest in the tissue engineering area, due to their potential to reinforce scaffolds for hard tissues applications, a number of variables must be set prior to any clinical application. This manuscript addresses the evaluation of thermo-mechanical properties and of cell proliferation of cellulose nanocrystals (CNC), poly(butylene adipate-co-terephthalate) (PBAT), poly(ε-caprolactone) (PCL) films and their bionanocomposites with 2 wt% of CNC obtained by casting technique. Cellulose nanocrystals extracted from Balsa wood by acid hydrolysis were used as a reinforcing phase in PBAT and PCL matrix films. The films and pure CNC… More >

  • Open Access

    ARTICLE

    Thermal and Mechanical Properties of Thermoplastic Starch and Poly(Vinyl Alcohol-Co-Ethylene) Blends

    Ana Clara Lancarovici Alves, Rafael Grande, Antonio José Felix Carvalho*

    Journal of Renewable Materials, Vol.7, No.3, pp. 245-252, 2019, DOI:10.32604/jrm.2019.00833

    Abstract The interest in thermoplastic starch (TPS) as a substitute material to replace conventional thermoplastics continues especially due its biodegradability, availability, low cost and because it is obtained from renewable sources. However, its poor mechanical properties and its high sensitivity to humidity have limited its use in several applications. Here, the copolymer poly (ethylene-co-vinyl alcohol) (EVOH), with two different ethylene contents, 27 and 44 mol% were blended with TPS by extrusion in order to overcome these limitations. The obtained blends were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mechanical tensile testing, Scanning Electron Microscopy More >

  • Open Access

    ARTICLE

    Enzymatic Synthesis and Characterization of Biodegradable Poly(w-pentadecalactone-co-e-caprolactone) Copolymers

    Cansu Ulker*, Yuksel Guvenilir

    Journal of Renewable Materials, Vol.6, No.6, pp. 591-598, 2018, DOI:10.7569/JRM.2017.634189

    Abstract As an alternative biodegradable aliphatic polyester, poly(w-pentadecalactone-co-ε-caprolactone) copolymer was synthesized via enzymatic ring-opening polymerization. A new biocatalyst, Candida antarctica lipase B, immobilized onto rice husk ash was used for catalysis. Reactions were carried out at various temperatures and periods for varied copolymer compositions in order to obtain the highest molecular weight copolymer. The best reaction parameters were found to be 80 °C and 6 hours and molecular weights increased proportionally with the amount of w-pentadecalactone (w-PDL). The molecular structure of copolymer with 75% weight ratio of w-PDL (Mn = 19720 g/mol) was characterized by proton More >

  • Open Access

    ARTICLE

    Novel Bio-based Flame Retardant Systems Derived from Tannic Acid

    Fouad LAOUTID1,*, Valeriia KARASEVA1, Lucie COSTES1, 2, Sylvain BROHEZ2, Rosica MINCHEVA1, Philippe DUBOIS1

    Journal of Renewable Materials, Vol.6, No.6, pp. 559-572, 2018, DOI:10.32604/JRM.2018.00004

    Abstract In this study, tannic acid (TA) was investigated as flame retardant agent for PLA. Different strategies to modify its thermal degradation pathway have been explored in order to improve its charring effect. The first one consists in combining TA with organomodified montmorillonite (oMMT), and enables limiting the thermo-oxidative degradation of TA and promoting the formation of an effective char layer. Flame-retardant (FR) behavior of PLA-based composition has been found to be positively impacted by this combination since a reduction of the peak of Heat Release Rate (PHRR), more important than the value recorded when oMMT More >

  • Open Access

    ARTICLE

    Antioxidant Migration Studies in Chitosan Films Incorporated with Plant Extracts

    Victor Gomes Lauriano Souza1, Patrícia Freitas Rodrigues2, Maria Paula Duarte1, Ana Luísa Fernando1*

    Journal of Renewable Materials, Vol.6, No.5, pp. 548-558, 2018, DOI:10.7569/JRM.2018.634104

    Abstract The aim of this work was to develop an active biopolymer based on chitosan by incorporating natural antioxidants. Five essential oils (ginger, rosemary, sage, tea tree and thyme) and six hydro-alcoholic extracts (from ginger, green and black tea, kenaf leaves, rosemary and sage plants) were tested. Migration assays were carried out to evaluate the films' activity, and total phenolic content and antioxidant activity were monitored in the simulant during storage. Interaction between natural compounds and polymeric matrix was evaluated by FTIR spectroscopy. The diffusion of the phenolic compounds was not detected in the films incorporated More >

Displaying 31-40 on page 4 of 71. Per Page