Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (77)
  • Open Access

    ARTICLE

    Performance Comparison of Commercial and Home-Made Lipases for Synthesis of Poly(δ-Valerolactone) Homopolymers

    Cansu Ulker*, Zeynep Gok, Yuksel Guvenilir

    Journal of Renewable Materials, Vol.7, No.4, pp. 335-343, 2019, DOI:10.32604/jrm.2019.03819

    Abstract Novozyme 435, which is the commercially available immobilized form of Candida antarctica lipase B, has been successfully conducted ring opening polymerization of lactones in organic solvents. In this paper, it was aimed to introduce an alternative biocatalyst for Novozyme 435. Candida antarctica lipase B immobilized onto rice husk ashes via physical adsorption (with a specific activity of 4.4 U/mg) was prepared in previous studies and used as a biocatalyst for poly(δ-valerolactone) synthesis in the present work. Polymerization reactions were proceeded at various reaction temperatures and periods via both two immobilized enzyme preparations. The resulting products More >

  • Open Access

    ARTICLE

    Poly (Butylene Adipate-Co-Terephthalate) and Poly (Ɛ-Caprolactone) and Their Bionanocomposites with Cellulose Nanocrystals: Thermo-Mechanical Properties and Cell Viability Study

    Marcia Cristina Branciforti1,*, Caroline Faria Bellani2, Carolina Lipparelli Morelli2, Alice Ferrand3, Nadia Benkirane-Jessel3, Rosario Elida Suman Bretas2

    Journal of Renewable Materials, Vol.7, No.3, pp. 269-277, 2019, DOI:10.32604/jrm.2019.01833

    Abstract Although nanocomposites have recently attracted special interest in the tissue engineering area, due to their potential to reinforce scaffolds for hard tissues applications, a number of variables must be set prior to any clinical application. This manuscript addresses the evaluation of thermo-mechanical properties and of cell proliferation of cellulose nanocrystals (CNC), poly(butylene adipate-co-terephthalate) (PBAT), poly(ε-caprolactone) (PCL) films and their bionanocomposites with 2 wt% of CNC obtained by casting technique. Cellulose nanocrystals extracted from Balsa wood by acid hydrolysis were used as a reinforcing phase in PBAT and PCL matrix films. The films and pure CNC… More >

  • Open Access

    ARTICLE

    Thermal and Mechanical Properties of Thermoplastic Starch and Poly(Vinyl Alcohol-Co-Ethylene) Blends

    Ana Clara Lancarovici Alves, Rafael Grande, Antonio José Felix Carvalho*

    Journal of Renewable Materials, Vol.7, No.3, pp. 245-252, 2019, DOI:10.32604/jrm.2019.00833

    Abstract The interest in thermoplastic starch (TPS) as a substitute material to replace conventional thermoplastics continues especially due its biodegradability, availability, low cost and because it is obtained from renewable sources. However, its poor mechanical properties and its high sensitivity to humidity have limited its use in several applications. Here, the copolymer poly (ethylene-co-vinyl alcohol) (EVOH), with two different ethylene contents, 27 and 44 mol% were blended with TPS by extrusion in order to overcome these limitations. The obtained blends were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mechanical tensile testing, Scanning Electron Microscopy More >

  • Open Access

    ARTICLE

    Enzymatic Synthesis and Characterization of Biodegradable Poly(w-pentadecalactone-co-e-caprolactone) Copolymers

    Cansu Ulker*, Yuksel Guvenilir

    Journal of Renewable Materials, Vol.6, No.6, pp. 591-598, 2018, DOI:10.7569/JRM.2017.634189

    Abstract As an alternative biodegradable aliphatic polyester, poly(w-pentadecalactone-co-ε-caprolactone) copolymer was synthesized via enzymatic ring-opening polymerization. A new biocatalyst, Candida antarctica lipase B, immobilized onto rice husk ash was used for catalysis. Reactions were carried out at various temperatures and periods for varied copolymer compositions in order to obtain the highest molecular weight copolymer. The best reaction parameters were found to be 80 °C and 6 hours and molecular weights increased proportionally with the amount of w-pentadecalactone (w-PDL). The molecular structure of copolymer with 75% weight ratio of w-PDL (Mn = 19720 g/mol) was characterized by proton More >

  • Open Access

    ARTICLE

    Novel Bio-based Flame Retardant Systems Derived from Tannic Acid

    Fouad LAOUTID1,*, Valeriia KARASEVA1, Lucie COSTES1, 2, Sylvain BROHEZ2, Rosica MINCHEVA1, Philippe DUBOIS1

    Journal of Renewable Materials, Vol.6, No.6, pp. 559-572, 2018, DOI:10.32604/JRM.2018.00004

    Abstract In this study, tannic acid (TA) was investigated as flame retardant agent for PLA. Different strategies to modify its thermal degradation pathway have been explored in order to improve its charring effect. The first one consists in combining TA with organomodified montmorillonite (oMMT), and enables limiting the thermo-oxidative degradation of TA and promoting the formation of an effective char layer. Flame-retardant (FR) behavior of PLA-based composition has been found to be positively impacted by this combination since a reduction of the peak of Heat Release Rate (PHRR), more important than the value recorded when oMMT More >

  • Open Access

    ARTICLE

    Antioxidant Migration Studies in Chitosan Films Incorporated with Plant Extracts

    Victor Gomes Lauriano Souza1, Patrícia Freitas Rodrigues2, Maria Paula Duarte1, Ana Luísa Fernando1*

    Journal of Renewable Materials, Vol.6, No.5, pp. 548-558, 2018, DOI:10.7569/JRM.2018.634104

    Abstract The aim of this work was to develop an active biopolymer based on chitosan by incorporating natural antioxidants. Five essential oils (ginger, rosemary, sage, tea tree and thyme) and six hydro-alcoholic extracts (from ginger, green and black tea, kenaf leaves, rosemary and sage plants) were tested. Migration assays were carried out to evaluate the films' activity, and total phenolic content and antioxidant activity were monitored in the simulant during storage. Interaction between natural compounds and polymeric matrix was evaluated by FTIR spectroscopy. The diffusion of the phenolic compounds was not detected in the films incorporated More >

  • Open Access

    ARTICLE

    Three Phase Composite Cylinder Assemblage Model for Analyzing the Elastic Behavior of MWCNT-Reinforced Polymers

    Puneet Kumar1,*, J. Srinivas2

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 1-20, 2018, DOI:10.3970/cmc.2018.054.001

    Abstract Evolution of computational modeling and simulation has given more emphasis on the research activities related to carbon nanotube (CNT) reinforced polymer composites recently. This paper presents the composite cylinder assemblage (CCA) approach based on continuum mechanics for investigating the elastic properties of a polymer resin reinforced by multi-walled carbon nanotubes (MWCNTs). A three-phase cylindrical representative volume element (RVE) model is employed based on CCA technique to elucidate the effects of inter layers, chirality, interspacing, volume fraction of MWCNT, interphase properties and temperature conditions on the elastic modulus of the composite. The interface region between CNT More >

  • Open Access

    ARTICLE

    NUMERICAL STUDY OF NON-NEWTONIAN POLYMERIC BOUNDARY LAYER FLOW AND HEAT TRANSFER FROM A PERMEABLE HORIZONTAL ISOTHERMAL CYLINDER

    A. Subba Raoa,* , V. Ramachandra Prasada , P. Rajendraa , M. Sasikalaa , O. Anwar Begb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.2

    Abstract In this article, we investigate the nonlinear steady state boundary layer flow and heat transfer of an incompressible Jeffery non-Newtonian fluid from a permeable horizontal isothermal cylinder. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit, finite-difference technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely with Deborah number (De), surface suction parameter (S), Prandtl number (Pr), ratio of relaxation to retardation times (λ) and dimensionless tangential coordinate (ξ) on velocity and temperature evolution in the boundary… More >

  • Open Access

    ARTICLE

    Effect of synthesis variables of plasma synthesized polymers on growth of HepG2 cells

    Elizabeth PÉREZ-TEJADA1,4*, Juan MORALES-CORONA3, Luis Ernesto GÓMEZ-QUIRÓZ2, María Concepción GUTIERREZ-RUIZ2, Roberto OLAYO3

    BIOCELL, Vol.41, No.2-3, pp. 41-44, 2017, DOI:10.32604/biocell.2017.41.041

    Abstract Low pressure plasma polymer films were synthesized using pyrrole and allylamine monomers and adding iodine was used (or not) for the reaction in both cases. They were polymerized on glass substrates under the same reaction conditions. Polymerization of allylamine was also studied at different operating powers. These thin polymer films were used as culture surfaces for HepG2 cells, a cell line derived from a human hepatoma. The proliferation, differentiation and two-dimensional propagation until obtaining monolayer of the cells was studied on the different synthetized films and correlations were established between the conditions of synthesis, the More >

  • Open Access

    ARTICLE

    Impact of Polymerization Protocol on Structure-Property Relationships of Entirely Lipid-Derived Poly(ester urethane)s

    Shegufta Shetranjiwalla, Shaojun Li, Laziz Bouzidi, Suresh S. Narine*

    Journal of Renewable Materials, Vol.5, No.5, pp. 333-344, 2017, DOI:10.7569/JRM.2017.634102

    Abstract The impact of polymerization protocol on phase structure and properties of entirely lipid-derived thermoplastic poly(ester urethane)s (TPEU)s was investigated. The TPEUs were synthesized from 1,7-heptamethylene diisocyanate, polyester diols and 1,9-nonanediol (ND) as chain extender. A two-stage polymerization method was used to prepare two TPEUs; one in which ND was added in the first stage of polymerization as part of the prepolymer and another in the second stage after the prepolymer was formed. Two very different morphologies exhibiting different degrees of phase separation were obtained, driven by the sequence of addition of the chain extender. The More >

Displaying 41-50 on page 5 of 77. Per Page