Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (118)
  • Open Access

    ARTICLE

    A Novel Radial Basis Function Neural Network Approach for ECG Signal Classification

    S. Sathishkumar1,*, R. Devi Priya2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 129-148, 2023, DOI:10.32604/iasc.2023.023817

    Abstract Electrocardiogram (ECG) is a diagnostic method that helps to assess and record the electrical impulses of heart. The traditional methods in the extraction of ECG features is inneffective for avoiding the computational abstractions in the ECG signal. The cardiologist and medical specialist find numerous difficulties in the process of traditional approaches. The specified restrictions are eliminated in the proposed classifier. The fundamental aim of this work is to find the R-R interval. To analyze the blockage, different approaches are implemented, which make the computation as facile with high accuracy. The information are recovered from the MIT-BIH dataset. The retrieved data… More >

  • Open Access

    ARTICLE

    Visualization Detection of Solid–Liquid Two-Phase Flow in Filling Pipeline by Electrical Capacitance Tomography Technology

    Ningbo Jing1, Mingqiao Li1, Lang Liu2,*, Yutong Shen1, Peijiao Yang1, Xuebin Qin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 465-476, 2022, DOI:10.32604/cmes.2022.018965

    Abstract During mine filling, the caking in the pipeline and the waste rock in the filling slurry may cause serious safety accidents such as pipe blocking or explosion. Therefore, the visualization of the inner mine filling of the solid–liquid two-phase flow in the pipeline is important. This paper proposes a method based on capacitance tomography for the visualization of the solid–liquid distribution on the section of a filling pipe. A feedback network is used for electrical capacitance tomography reconstruction. This reconstruction method uses radial basis function neural network fitting to determine the relationship between the capacitance vector and medium distribution error.… More >

  • Open Access

    ARTICLE

    Thermogram Adaptive Efficient Model for Breast Cancer Detection Using Fractional Derivative Mask and Hybrid Feature Set in the IoT Environment

    Ritam Sharma1, Janki Ballabh Sharma1, Ranjan Maheshwari1, Praveen Agarwal2,3,4,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 923-947, 2022, DOI:10.32604/cmes.2022.016065

    Abstract In this paper, a novel hybrid texture feature set and fractional derivative filter-based breast cancer detection model is introduced. This paper also introduces the application of a histogram of linear bipolar pattern features (HLBP) for breast thermogram classification. Initially, breast tissues are separated by masking operation and filtered by Grmwald–Letnikov fractional derivative-based Sobel mask to enhance the texture and rectify the noise. A novel hybrid feature set using HLBP and other statistical feature sets is derived and reduced by principal component analysis. Radial basis function kernel-based support vector machine is employed for detecting the abnormality in the thermogram. The performance… More >

  • Open Access

    ARTICLE

    Forecasting of Trend-Cycle Time Series Using Hybrid Model Linear Regression

    N. Ashwini1,*, V. Nagaveni2, Manoj Kumar Singh3

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 893-908, 2022, DOI:10.32604/iasc.2022.022231

    Abstract Forecasting for a time series signal carrying single pattern characteristics can be done properly using function mapping-based principle by a well-designed artificial neural network model. But the performances degraded very much when time series carried the mixture of different patterns characteristics. The level of difficulty increases further when there is a need to predict far time samples. Among several possible mixtures of patterns, the trend-cycle time series is having its importance because of its occurrence in many real-life applications like in electric power generation, fuel consumption and automobile sales. Over the mixed characteristics of patterns, a neural model, suffered heavily… More >

  • Open Access

    ARTICLE

    Optimal Data Placement and Replication Approach for SIoT with Edge

    B. Prabhu Shankar1,*, S. Chitra2

    Computer Systems Science and Engineering, Vol.41, No.2, pp. 661-676, 2022, DOI:10.32604/csse.2022.019507

    Abstract Social networks (SNs) are sources with extreme number of users around the world who are all sharing data like images, audio, and video to their friends using IoT devices. This concept is the so-called Social Internet of Things (SIot). The evolving nature of edge-cloud computing has enabled storage of a large volume of data from various sources, and this task demands an efficient storage procedure. For this kind of large volume of data storage, the usage of data replication using edge with geo-distributed cloud service area is suited to fulfill the user’s expectations with low latency. The major issue is… More >

  • Open Access

    ARTICLE

    Nonlinear Identification and Control of Laser Welding Based on RBF Neural Networks

    Hongfei Wei1,*, Hui Zhao2, Xinlong Shi1, Shuang Liang3

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 51-65, 2022, DOI:10.32604/csse.2022.017739

    Abstract A laser beam is a heat source with a high energy density; this technology has been rapidly developed and applied in the field of welding owing to its potential advantages, and supplements traditional welding techniques. An in-depth analysis of its operating process could establish a good foundation for its application in China. It is widely understood that the welding process is a highly nonlinear and multi-variable coupling process; it comprises a significant number of complex processes with random uncertain factors. Because of their nonlinear mapping and self-learning characteristics, artificial neural networks (ANNs) have certain advantages in comparison to traditional methods… More >

  • Open Access

    ARTICLE

    User Interaction Based Recommender System Using Machine Learning

    R. Sabitha1, S. Vaishnavi2,*, S. Karthik1, R. M. Bhavadharini3

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1037-1049, 2022, DOI:10.32604/iasc.2022.018985

    Abstract In the present scenario of electronic commerce (E-Commerce), the in-depth knowledge of user interaction with resources has become a significant research concern that impacts more on analytical evaluations of recommender systems. For staying in aggressive E-Commerce, various products and services regarding distinctive requirements must be provided on time. Moreover, because of the large amount of product information available online, Recommender Systems (RS) are required to analyze the availability of consumers, which improves the decision-making of customers with detailed product knowledge and reduces time consumption. With that note, this paper derives a new model called User Interaction based Recommender System (UI-RS)… More >

  • Open Access

    ARTICLE

    An Efficient Meshless Method for Hyperbolic Telegraph Equations in (1 + 1) Dimensions

    Fuzhang Wang1,2, Enran Hou2,*, Imtiaz Ahmad3, Hijaz Ahmad4, Yan Gu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 687-698, 2021, DOI:10.32604/cmes.2021.014739

    Abstract Numerical solutions of the second-order one-dimensional hyperbolic telegraph equations are presented using the radial basis functions. The purpose of this paper is to propose a simple novel direct meshless scheme for solving hyperbolic telegraph equations. This is fulfilled by considering time variable as normal space variable. Under this scheme, there is no need to remove time-dependent variable during the whole solution process. Since the numerical solution accuracy depends on the condition of coefficient matrix derived from the radial basis function method. We propose a simple shifted domain method, which can avoid the full-coefficient interpolation matrix easily. Numerical experiments performed with… More >

  • Open Access

    ARTICLE

    Comparison of Detection and Classification of Hard Exudates Using Artificial Neural System vs. SVM Radial Basis Function in Diabetic Retinopathy

    V. Sudha1,*, T. R. Ganesh Babu2, N. Vikram1, R. Raja2

    Molecular & Cellular Biomechanics, Vol.18, No.3, pp. 139-145, 2021, DOI:10.32604/mcb.2021.016056

    Abstract Diabetic Retinopathy (DR) is a disease that occurs in the eye which results in blindness as it passes to proliferative stage. Diabetes can significantly result in symptoms like blurring of vision, kidney failure, nervous damage. Hence it has become necessary to identify retinal damage that occurs in diabetic eye due to raised glucose level in its initial stage itself. Hence automated detection of anamoly has become very essential. The appearance of crimson and yellow lesions is considered as the earliest symptoms of DR which are called as hemorrhages and exudates. If DR is analysed at initial stage, blindness does not… More >

  • Open Access

    ARTICLE

    Prediction of Parkinson’s Disease Using Improved Radial Basis Function Neural Network

    Rajalakshmi Shenbaga Moorthy1,*, P. Pabitha2

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3101-3119, 2021, DOI:10.32604/cmc.2021.016489

    Abstract Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression. This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network (IRBFNN). Particle swarm optimization (PSO) with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN. The performance of RBFNN is seriously affected by the centers of hidden neurons. Conventionally K-means was used to find the centers of hidden neurons. The problem of sensitiveness to the random initial centroid in K-means degrades the performance of RBFNN.… More >

Displaying 11-20 on page 2 of 118. Per Page