Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,683)
  • Open Access

    ARTICLE

    Preparation and Characterization of Eco-friendly Carboxymethyl Cellulose Antimicrobial Nanocomposite Hydrogels

    Sawsan Dacrory1*, Hussein Abou-Yousef1, Ragab E. Abou-Zeid1, Samir Kamel1, Mohamed S. Abdel-Aziz2, Mohamed Elbadry3

    Journal of Renewable Materials, Vol.6, No.5, pp. 536-547, 2018, DOI:10.7569/JRM.2017.634190

    Abstract Carboxymethyl cellulose hydrogels were developed through crosslinking process using eco-friendly crosslinkers such as maleic, succinic, and citric acids. Carboxymethyl cellulose was prepared from the cellulosic fraction of olive industry residues. A series of hydrogels with varying crosslinker acid concentrations, reaction times, and reaction temperatures was produced to study the swelling capacities and gel fraction of the obtained hydrogels. Additional study pertains to the preparation of antimicrobial nanocomposite hydrogels through in-situ incorporation of the silver nanoparticles during the crosslinking reaction. Silver nanoparticles were prepared by reduction of AgNO3with leaves of Ricinus communis. The particle size of prepared silver nanoparticles was detected… More >

  • Open Access

    ARTICLE

    Ultrathin Wood Laminae–Thermoplastic Starch Biodegradable Composites

    Andrea Dorigato1,*, Martino Negri2, Alessandro Pegoretti1,*

    Journal of Renewable Materials, Vol.6, No.5, pp. 493-503, 2018, DOI:10.7569/JRM.2017.634177

    Abstract Novel fully biodegradable thermoplastic composite laminates reinforced with ultrathin wood laminae were prepared through a hot-pressing process by using two different thermoplastic starch (TPS) matrices. The microstructure and physical properties of the resulting unidirectional and bidirectional laminates were studied. The investigated materials presented a complex microstructure, in which the porosity of the wood laminae was almost entirely occluded by the polymer matrix. The mechanical behavior of the laminates was strongly affected by the obtained microstructure, and matrix penetration in wood pores led to biodegradable composites with elastic modulus and tensile strength higher than those of their constituents. Finally, thermal welding… More >

  • Open Access

    ARTICLE

    Energy Release Rate Measurement of Welded Bamboo Joints

    Haiyang Zhang1,*, Qian He1, Xiaoning Lu1, A. Pizzi2,3, Changtong Mei1, Xianxu Zhan4

    Journal of Renewable Materials, Vol.6, No.5, pp. 450-456, 2018, DOI:10.7569/JRM.2017.634180

    Abstract Double cantilever beam tests were used to measure the energy release rates of linear vibrational welded moso bamboo joints. The influence of the length of the preserved cracks, the different combinations of the inner and outer bamboo surfaces and the moisture content is studied herein. The experimental compliance method, which is based on linear elastic fracture mechanics and has been shown to be an ideal method, was used to analyze data with the power equation. The results show that the preserved initial crack length does not have a significant effect on the final measured energy release rate, while the moso… More >

  • Open Access

    ARTICLE

    Elaboration of Materials with Functionality Gradients by Assembly of Chitosan-Collagen Microspheres Produced by Microfluidics

    David Azria1,2, Raluca Guermache1,2, Sophie Raisin1, Sébastien Blanquer1, Frédéric Gobeaux3, Marie Morille1, Emmanuel Belamie1,2,*

    Journal of Renewable Materials, Vol.6, No.3, pp. 314-324, 2018, DOI:10.7569/JRM.2017.634186

    Abstract Biopolymers extracted from renewable resources like chitosan and collagen exhibit interesting properties for the elaboration of materials designed for tissue engineering applications, among which are their hydrophilicity, biocompatibility and biodegradability. In many cases, functional recovery of an injured tissue or organ requires oriented cell outgrowth, which is particularly critical for nerve regeneration. Therefore, there is a growing interest for the elaboration of materials exhibiting functionalization gradients able to guide cells. Here, we explore an original way of elaborating such gradients by assembling particles from a library of functionalized microspheres. We propose a simple process to prepare chitosan-collagen hybrid microspheres by… More >

  • Open Access

    ARTICLE

    The Effects of Accelerated Photooxidation on Molecular Weight and Thermal and Mechanical Properties of PHBV/Cloisite 30B Bionanocomposites

    Kahina Iggui1,2,*,†, Mustapha Kaci2, Nicolas Le Moigne1, Anne Bergeret1

    Journal of Renewable Materials, Vol.6, No.3, pp. 288-298, 2018, DOI:10.7569/JRM.2017.634184

    Abstract The effects of accelerated photooxidation on the molecular weight and thermal and mechanical properties of Cast PHBV and PHBV/Cloisite 30B (3 wt%) bionanocomposites are investigated herein. Through size exclusion chromatography (SEC) analysis, a significant decrease in both weight and number average molecular weights was observed for all irradiated samples over time, resulting from the chain scission mechanism. Differential scanning calorimetry (DSC) data indicated a decrease in degree of crystallinity and melting temperature after UV exposure, with the appearance of double melting peaks related to the changes in the crystal structure of PHBV. Thermal stability, tensile and thermo-mechanical properties were also… More >

  • Open Access

    ARTICLE

    PHBV Crystallization under Injection Molding Conditions: Influence of Packing Pressure and Mold Temperature

    G. El hajj Sleiman1, G. Colomines1, R. Deterre1, I. Petit1, E. Leroy2, S. Belhabib1,*

    Journal of Renewable Materials, Vol.6, No.3, pp. 270-276, 2018, DOI:10.7569/JRM.2017.634179

    Abstract Poly(3-hydroxy butyrate)-co-(3-hydroxy valerate) (PHBV) is a biobased and biodegradable polyester. This semicrystalline bioplastic could be a good candidate for the replacement of some commodity plastics derived from oil. However, the control of the conditions of its processing in order to obtain optimal properties of the finished products remains a current research subject. The objective of this work is to better understand the crystallization under injection molding conditions by inline measurements during the process. We focused on the influence of two key processing parameters, namely, mold temperature and packing pressure. The modeling of inline temperature measurements allowed an inverse estimation of… More >

  • Open Access

    ARTICLE

    Microfibrillated Cellulose from Sugarcane Bagasse as a Biorefinery Product for Ethanol Production

    Rafael Grande1*, Eliane Trovatti2, Maria Tereza B. Pimenta3, Antonio J. F. Carvalho1

    Journal of Renewable Materials, Vol.6, No.2, pp. 195-202, 2018, DOI:10.7569/JRM.2018.634109

    Abstract Research involving the preparation of microfibrillated cellulose (MFC) from sugarcane bagasse is a relevant topic to the production of new nanomaterials and more accessible cellulose substrates for the production of second generation ethanol. Regarding the transformation of cellulose into glucose, the precursor of second generation ethanol, this nanosized cellulosic substrate represents a more appropriate material for the chemical hydrolysis process. The high aspect ratio of MFC improves hydrolysis, requiring mild conditions and decreasing the generation of by-products. Here, MFC was prepared from sugarcane bagasse by ultrasound defibrillation. This material was oxidized with 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) to produce negatively charged high defibrillated… More >

  • Open Access

    ARTICLE

    Enzymatic Hydrolysis of Sugarcane Biomass and Heat Integration as Enhancers of Ethanol Production

    Reynaldo Palacios-Bereche1, Adriano Ensinas2, Marcelo Modesto1, Silvia Nebra1,3,*

    Journal of Renewable Materials, Vol.6, No.2, pp. 183-194, 2018, DOI:10.7569/JRM.2017.634175

    Abstract The aim of this study is to assess the possibility of increasing ethanol production by introducing the bagasse hydrolysis process into conventional distilleries. Simulations were performed for mass and energy balances using Aspen Plus® software. It was assumed that sugarcane trash and lignin cake—hydrolysis process residues—are available as supplementary fuel. Several cases were evaluated, including: (a) conventional ethanol distillery, (b) conventional plant combined with a hydrolysis process without heat integration, with different solid contents in the hydrolysis reactor, and (c) conventional plant combined with the hydrolysis process applying heat integration by pinch analysis. The highest ethanol yield was achieved in… More >

  • Open Access

    ARTICLE

    Alternatives of Small-Scale Biorefineries for the Integrated Production of Xylitol from Sugarcane Bagasse

    Nicolás M. Clauser1*, Soledad Gutiérrez2, María C. Area1, Fernando E. Felissia1, María E. Vallejos1

    Journal of Renewable Materials, Vol.6, No.2, pp. 139-151, 2018, DOI:10.7569/JRM.2017.634145

    Abstract Small-scale biorefinery from sugarcane bagasse offers new possibilities to the sugar and ethanol industries. The aim of this study was to evaluate the feasibility of a small-scale biorefinery for the production of xylitol from sugarcane bagasse. The liquid fraction from the autohydrolysis treatment was selected as the source of sugars for xylitol and two scenarios were analyzed for the residual solid: ethanol or pellet production. A technical-economic analysis of alternatives was applied. The internal rate of return (IRR) was used to compare the selected proposals. The highest IRR values were obtained when processing 70,000 dry tons per year of bagasse.… More >

  • Open Access

    ARTICLE

    The Role of Bamboo Nanoparticles in Kenaf Fiber Reinforced Unsaturated Polyester Composites

    Enih Rosamah1, Abdul Khalil H.P.S.2*, S.W. Yap2, Chaturbhuj K. Saurabh2, Paridah M. Tahir3, Rudi Dungani4, Abdulwahab F. Owolabi2

    Journal of Renewable Materials, Vol.6, No.1, pp. 75-86, 2018, DOI:10.7569/JRM.2017.634152

    Abstract In this study, bamboo nanoparticles in concentration ranges from 0–5% were incorporated along with woven/nonwoven kenaf fiber mat into unsaturated polyester and the developed composites were further characterized. Bamboo chips were subjected to ball milling process for the synthesis of nanoparticles with a particle size of 52.92 nm. The effect that the incorporation of nanoparticles had on various properties of reinforced composites was further observed. Due to the high surface area of nanoparticles, incorporation of 3% of nanofillers contributed towards strong bonding and better wettability with matrix, thus resulting in excellent mechanical properties and thermal characteristics in reinforced unsaturated polyester… More >

Displaying 3891-3900 on page 390 of 4683. Per Page