Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (127)
  • Open Access

    ARTICLE

    Optimized Predictive Framework for Healthcare Through Deep Learning

    Yasir Shahzad1,*, Huma Javed1, Haleem Farman2, Jamil Ahmad2, Bilal Jan3, Abdelmohsen A. Nassani4

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 2463-2480, 2021, DOI:10.32604/cmc.2021.014904 - 05 February 2021

    Abstract Smart healthcare integrates an advanced wave of information technology using smart devices to collect health-related medical science data. Such data usually exist in unstructured, noisy, incomplete, and heterogeneous forms. Annotating these limitations remains an open challenge in deep learning to classify health conditions. In this paper, a long short-term memory (LSTM) based health condition prediction framework is proposed to rectify imbalanced and noisy data and transform it into a useful form to predict accurate health conditions. The imbalanced and scarce data is normalized through coding to gain consistency for accurate results using synthetic minority oversampling… More >

  • Open Access

    ARTICLE

    Two polymorphisms in methylenetetrahydrofolate reductase gene (C677T and A1298C) frequently associated with recurrent spontaneous abortion show no association in Saudi women

    AFRAH ALKHURIJI1, ATEKAH ABDULLAH MOHAMMED ALRAQIBAH1, AMAAL AWAD ALHARBI1, ZENEB BABAY2, FATIMAH BASIL AL-MUKAYNIZI3, ARWA ALTHOMALI3, SONYA S. ABDEL-RAZEQ4, ARJUMAND S. WARSY5

    BIOCELL, Vol.44, No.4, pp. 613-621, 2020, DOI:10.32604/biocell.2020.09652 - 24 December 2020

    Abstract Methylenetetrahydrofolate reductase (MTHFR) deficiency is the most common genetic cause of hyperhomocysteinemia, which has been implicated in the etiology of recurrent spontaneous abortion (RSA). This study was designed to investigate the association between two single nucleotide polymorphisms (SNP) (rs1801133 [C677T] and rs1801131 [A1298C]) in the MTHFR gene and RSA, in Saudis. These two SNPs were selected as these polymorphisms have a different effect on the activity and stability of the enzyme, and significantly diverse effects have been reported in relation to the association with RSA. Ethical approval was acquired from the IRB at King Saud… More >

  • Open Access

    ARTICLE

    Combining Trend-Based Loss with Neural Network for Air Quality Forecasting in Internet of Things

    Weiwen Kong1, Baowei Wang1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 849-863, 2020, DOI:10.32604/cmes.2020.012818 - 12 October 2020

    Abstract Internet of Things (IoT) is a network that connects things in a special union. It embeds a physical entity through an intelligent perception system to obtain information about the component at any time. It connects various objects. IoT has the ability of information transmission, information perception,andinformationprocessing.Theairqualityforecastinghasalways been an urgent problem, which affects people’s quality of life seriously. So far, many air quality prediction algorithms have been proposed, which can be mainly classifed into two categories. One is regression-based prediction, the other is deep learning-based prediction. Regression-based prediction is aimed to make use of the classical… More >

  • Open Access

    ARTICLE

    Roman Urdu News Headline Classification Empowered with Machine Learning

    Rizwan Ali Naqvi1, Muhammad Adnan Khan2, *, Nauman Malik2, Shazia Saqib2, Tahir Alyas2, Dildar Hussain3

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1221-1236, 2020, DOI:10.32604/cmc.2020.011686 - 20 August 2020

    Abstract Roman Urdu has been used for text messaging over the Internet for years especially in Indo-Pak Subcontinent. Persons from the subcontinent may speak the same Urdu language but they might be using different scripts for writing. The communication using the Roman characters, which are used in the script of Urdu language on social media, is now considered the most typical standard of communication in an Indian landmass that makes it an expensive information supply. English Text classification is a solved problem but there have been only a few efforts to examine the rich information supply… More >

  • Open Access

    ARTICLE

    DL-HAR: Deep Learning-Based Human Activity Recognition Framework for Edge Computing

    Abdu Gumaei1, 2, *, Mabrook Al-Rakhami1, 2, Hussain AlSalman2, Sk. Md. Mizanur Rahman3, Atif Alamri1, 2

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1033-1057, 2020, DOI:10.32604/cmc.2020.011740 - 20 August 2020

    Abstract Human activity recognition is commonly used in several Internet of Things applications to recognize different contexts and respond to them. Deep learning has gained momentum for identifying activities through sensors, smartphones or even surveillance cameras. However, it is often difficult to train deep learning models on constrained IoT devices. The focus of this paper is to propose an alternative model by constructing a Deep Learning-based Human Activity Recognition framework for edge computing, which we call DL-HAR. The goal of this framework is to exploit the capabilities of cloud computing to train a deep learning model More >

  • Open Access

    ARTICLE

    Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks

    Fei Li1, *, Jiayan Zhang1, Edward Szczerbicki2, Jiaqi Song1, Ruxiang Li 1, Renhong Diao1

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 653-681, 2020, DOI:10.32604/cmc.2020.011264 - 23 July 2020

    Abstract The increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated the intrusion detection system based on the in-vehicle system. We combined two algorithms to realize the efficient learning of the vehicle’s boundary behavior and the detection of intrusive behavior. In order to More >

  • Open Access

    ARTICLE

    Applying Stack Bidirectional LSTM Model to Intrusion Detection

    Ziyong Ran1, Desheng Zheng1, *, Yanling Lai1, Lulu Tian2

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 309-320, 2020, DOI:10.32604/cmc.2020.010102 - 23 July 2020

    Abstract Nowadays, Internet has become an indispensable part of daily life and is used in many fields. Due to the large amount of Internet traffic, computers are subject to various security threats, which may cause serious economic losses and even endanger national security. It is hoped that an effective security method can systematically classify intrusion data in order to avoid leakage of important data or misuse of data. As machine learning technology matures, deep learning is widely used in various industries. Combining deep learning with network security and intrusion detection is the current trend. In this… More >

  • Open Access

    ARTICLE

    Performance Anomaly Detection in Web Services: An RNN- Based Approach Using Dynamic Quality of Service Features

    Muhammad Hasnain1, Seung Ryul Jeong2, *, Muhammad Fermi Pasha3, Imran Ghani4

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 729-752, 2020, DOI:10.32604/cmc.2020.010394 - 10 June 2020

    Abstract Performance anomaly detection is the process of identifying occurrences that do not conform to expected behavior or correlate with other incidents or events in time series data. Anomaly detection has been applied to areas such as fraud detection, intrusion detection systems, and network systems. In this paper, we propose an anomaly detection framework that uses dynamic features of quality of service that are collected in a simulated setup. Three variants of recurrent neural networks-SimpleRNN, long short term memory, and gated recurrent unit are evaluated. The results reveal that the proposed method effectively detects anomalies in More >

  • Open Access

    ARTICLE

    Visual Relationship Detection with Contextual Information

    Yugang Li1, 2, *, Yongbin Wang1, Zhe Chen2, Yuting Zhu3

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1575-1589, 2020, DOI:10.32604/cmc.2020.07451 - 30 April 2020

    Abstract Understanding an image goes beyond recognizing and locating the objects in it, the relationships between objects also very important in image understanding. Most previous methods have focused on recognizing local predictions of the relationships. But real-world image relationships often determined by the surrounding objects and other contextual information. In this work, we employ this insight to propose a novel framework to deal with the problem of visual relationship detection. The core of the framework is a relationship inference network, which is a recurrent structure designed for combining the global contextual information of the object to More >

  • Open Access

    ARTICLE

    3-Dimensional Bag of Visual Words Framework on Action Recognition

    Shiqi Wang1, Yimin Yang1, *, Ruizhong Wei1, Qingming Jonathan Wu2

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1081-1091, 2020, DOI:10.32604/cmc.2020.09648 - 30 April 2020

    Abstract Human motion recognition plays a crucial role in the video analysis framework. However, a given video may contain a variety of noises, such as an unstable background and redundant actions, that are completely different from the key actions. These noises pose a great challenge to human motion recognition. To solve this problem, we propose a new method based on the 3-Dimensional (3D) Bag of Visual Words (BoVW) framework. Our method includes two parts: The first part is the video action feature extractor, which can identify key actions by analyzing action features. In the video action More >

Displaying 111-120 on page 12 of 127. Per Page