Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (54)
  • Open Access


    ResCD-FCN: Semantic Scene Change Detection Using Deep Neural Networks

    S. Eliza Femi Sherley1,*, J. M. Karthikeyan1, N. Bharath Raj1, R. Prabakaran2, A. Abinaya1, S. V. V. Lakshmi3

    Journal on Artificial Intelligence, Vol.4, No.4, pp. 215-227, 2022, DOI:10.32604/jai.2022.034931

    Abstract Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic (labels/categories) details before and after the timelines are analyzed. Periodical land change analysis is used for many real time applications for valuation purposes. Majority of the research works are focused on Convolutional Neural Networks (CNN) which tries to analyze changes alone. Semantic information of changes appears to be missing, there by absence of communication between the different semantic timelines and changes detected over the region happens. To overcome this limitation, a… More >

  • Open Access


    Optimizing Spatial Relationships in GCN to Improve the Classification Accuracy of Remote Sensing Images

    Zimeng Yang, Qiulan Wu, Feng Zhang*, Xuefei Chen, Weiqiang Wang, Xueshen Zhang

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 491-506, 2023, DOI:10.32604/iasc.2023.037558

    Abstract Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation. With the continuous development of artificial intelligence technology, the use of deep learning methods for interpreting remote-sensing images has matured. Existing neural networks disregard the spatial relationship between two targets in remote sensing images. Semantic segmentation models that combine convolutional neural networks (CNNs) and graph convolutional neural networks (GCNs) cause a lack of feature boundaries, which leads to the unsatisfactory segmentation of various target feature boundaries. In this paper, we propose a new semantic segmentation model for remote sensing images (called DGCN hereinafter),… More >

  • Open Access


    FST-EfficientNetV2: Exceptional Image Classification for Remote Sensing

    Huaxiang Song*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3959-3978, 2023, DOI:10.32604/csse.2023.038429

    Abstract Recently, the semantic classification (SC) algorithm for remote sensing images (RSI) has been greatly improved by deep learning (DL) techniques, e.g., deep convolutional neural networks (CNNs). However, too many methods employ complex procedures (e.g., multi-stages), excessive hardware budgets (e.g., multi-models), and an extreme reliance on domain knowledge (e.g., handcrafted features) for the pure purpose of improving accuracy. It obviously goes against the superiority of DL, i.e., simplicity and automation. Meanwhile, these algorithms come with unnecessarily expensive overhead on parameters and hardware costs. As a solution, the author proposed a fast and simple training algorithm based on the smallest architecture of… More >

  • Open Access


    Remote Sensing Image Encryption Using Optimal Key Generation-Based Chaotic Encryption

    Mesfer Al Duhayyim1,*, Fatma S. Alrayes2, Saud S. Alotaibi3, Sana Alazwari4, Nasser Allheeib5, Ayman Yafoz6, Raed Alsini6, Amira Sayed A. Aziz7

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3209-3223, 2023, DOI:10.32604/csse.2023.034185

    Abstract The Internet of Things (IoT) offers a new era of connectivity, which goes beyond laptops and smart connected devices for connected vehicles, smart homes, smart cities, and connected healthcare. The massive quantity of data gathered from numerous IoT devices poses security and privacy concerns for users. With the increasing use of multimedia in communications, the content security of remote-sensing images attracted much attention in academia and industry. Image encryption is important for securing remote sensing images in the IoT environment. Recently, researchers have introduced plenty of algorithms for encrypting images. This study introduces an Improved Sine Cosine Algorithm with Chaotic… More >

  • Open Access


    Fusing Satellite Images Using ABC Optimizing Algorithm

    Nguyen Hai Minh1, Nguyen Tu Trung2,*, Tran Thi Ngan2, Tran Manh Tuan2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3901-3909, 2023, DOI:10.32604/csse.2023.032311

    Abstract Fusing satellite (remote sensing) images is an interesting topic in processing satellite images. The result image is achieved through fusing information from spectral and panchromatic images for sharpening. In this paper, a new algorithm based on based the Artificial bee colony (ABC) algorithm with peak signal-to-noise ratio (PSNR) index optimization is proposed to fusing remote sensing images in this paper. Firstly, Wavelet transform is used to split the input images into components over the high and low frequency domains. Then, two fusing rules are used for obtaining the fused images. The first rule is “the high frequency components are fused… More >

  • Open Access


    Image Fusion Based on NSCT and Sparse Representation for Remote Sensing Data

    N. A. Lawrance*, T. S. Shiny Angel

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3439-3455, 2023, DOI:10.32604/csse.2023.030311

    Abstract The practice of integrating images from two or more sensors collected from the same area or object is known as image fusion. The goal is to extract more spatial and spectral information from the resulting fused image than from the component images. The images must be fused to improve the spatial and spectral quality of both panchromatic and multispectral images. This study provides a novel picture fusion technique that employs L0 smoothening Filter, Non-subsampled Contour let Transform (NSCT) and Sparse Representation (SR) followed by the Max absolute rule (MAR). The fusion approach is as follows: first, the multispectral and panchromatic… More >

  • Open Access


    Parameter Tuned Deep Learning Based Traffic Critical Prediction Model on Remote Sensing Imaging

    Sarkar Hasan Ahmed1, Adel Al-Zebari2, Rizgar R. Zebari3, Subhi R. M. Zeebaree4,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3993-4008, 2023, DOI:10.32604/cmc.2023.037464

    Abstract Remote sensing (RS) presents laser scanning measurements, aerial photos, and high-resolution satellite images, which are utilized for extracting a range of traffic-related and road-related features. RS has a weakness, such as traffic fluctuations on small time scales that could distort the accuracy of predicted road and traffic features. This article introduces an Optimal Deep Learning for Traffic Critical Prediction Model on High-Resolution Remote Sensing Images (ODLTCP-HRRSI) to resolve these issues. The presented ODLTCP-HRRSI technique majorly aims to forecast the critical traffic in smart cities. To attain this, the presented ODLTCP-HRRSI model performs two major processes. At the initial stage, the… More >

  • Open Access


    Cooperative Caching Strategy Based on Two-Layer Caching Model for Remote Sensing Satellite Networks

    Rui Xu1,2,3, Xiaoqiang Di1,3,4,*, Hao Luo1, Hui Qi1,3, Xiongwen He5, Wenping Lei6

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3903-3922, 2023, DOI:10.32604/cmc.2023.037054

    Abstract In Information Centric Networking (ICN) where content is the object of exchange, in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks. Setting up cache space at any node enables users to access data nearby, thus relieving the processing pressure on the servers. However, the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents. To address the issues mentioned, a cooperative caching strategy (CSTL) for remote sensing satellite… More >

  • Open Access


    Novel Vegetation Mapping Through Remote Sensing Images Using Deep Meta Fusion Model

    S. Vijayalakshmi*, S. Magesh Kumar

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 2915-2931, 2023, DOI:10.32604/iasc.2023.034165

    Abstract Preserving biodiversity and maintaining ecological balance is essential in current environmental conditions. It is challenging to determine vegetation using traditional map classification approaches. The primary issue in detecting vegetation pattern is that it appears with complex spatial structures and similar spectral properties. It is more demandable to determine the multiple spectral analyses for improving the accuracy of vegetation mapping through remotely sensed images. The proposed framework is developed with the idea of ensembling three effective strategies to produce a robust architecture for vegetation mapping. The architecture comprises three approaches, feature-based approach, region-based approach, and texture-based approach for classifying the vegetation… More >

  • Open Access


    Hyperspectral Remote Sensing Image Classification Using Improved Metaheuristic with Deep Learning

    S. Rajalakshmi1,*, S. Nalini2, Ahmed Alkhayyat3, Rami Q. Malik4

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1673-1688, 2023, DOI:10.32604/csse.2023.034414

    Abstract Remote sensing image (RSI) classifier roles a vital play in earth observation technology utilizing Remote sensing (RS) data are extremely exploited from both military and civil fields. More recently, as novel DL approaches develop, techniques for RSI classifiers with DL have attained important breakthroughs, providing a new opportunity for the research and development of RSI classifiers. This study introduces an Improved Slime Mould Optimization with a graph convolutional network for the hyperspectral remote sensing image classification (ISMOGCN-HRSC) model. The ISMOGCN-HRSC model majorly concentrates on identifying and classifying distinct kinds of RSIs. In the presented ISMOGCN-HRSC model, the synergic deep learning… More >

Displaying 1-10 on page 1 of 54. Per Page  

Share Link