Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    ARTICLE

    Designing Adaptive Multiple Dependent State Sampling Plan for Accelerated Life Tests

    Pramote Charongrattanasakul1, Wimonmas Bamrungsetthapong2,*, Poom Kumam3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1631-1651, 2023, DOI:10.32604/csse.2023.036179 - 09 February 2023

    Abstract A novel adaptive multiple dependent state sampling plan (AMDSSP) was designed to inspect products from a continuous manufacturing process under the accelerated life test (ALT) using both double sampling plan (DSP) and multiple dependent state sampling plan (MDSSP) concepts. Under accelerated conditions, the lifetime of a product follows the Weibull distribution with a known shape parameter, while the scale parameter can be determined using the acceleration factor (AF). The Arrhenius model is used to estimate AF when the damaging process is temperature-sensitive. An economic design of the proposed sampling plan was also considered for the… More >

  • Open Access

    ARTICLE

    Imbalanced Data Classification Using SVM Based on Improved Simulated Annealing Featuring Synthetic Data Generation and Reduction

    Hussein Ibrahim Hussein1, Said Amirul Anwar2,*, Muhammad Imran Ahmad2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 547-564, 2023, DOI:10.32604/cmc.2023.036025 - 06 February 2023

    Abstract Imbalanced data classification is one of the major problems in machine learning. This imbalanced dataset typically has significant differences in the number of data samples between its classes. In most cases, the performance of the machine learning algorithm such as Support Vector Machine (SVM) is affected when dealing with an imbalanced dataset. The classification accuracy is mostly skewed toward the majority class and poor results are exhibited in the prediction of minority-class samples. In this paper, a hybrid approach combining data pre-processing technique and SVM algorithm based on improved Simulated Annealing (SA) was proposed. Firstly,… More >

  • Open Access

    ARTICLE

    Semantic Segmentation by Using Down-Sampling and Subpixel Convolution: DSSC-UNet

    Young-Man Kwon, Sunghoon Bae, Dong-Keun Chung, Myung-Jae Lim*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 683-696, 2023, DOI:10.32604/cmc.2023.033370 - 06 February 2023

    Abstract Recently, semantic segmentation has been widely applied to image processing, scene understanding, and many others. Especially, in deep learning-based semantic segmentation, the U-Net with convolutional encoder-decoder architecture is a representative model which is proposed for image segmentation in the biomedical field. It used max pooling operation for reducing the size of image and making noise robust. However, instead of reducing the complexity of the model, max pooling has the disadvantage of omitting some information about the image in reducing it. So, this paper used two diagonal elements of down-sampling operation instead of it. We think… More >

  • Open Access

    ARTICLE

    A Spacecraft Equipment Layout Optimization Method for Diverse and Competitive Design

    Wei Cong, Yong Zhao*, Bingxiao Du*, Senlin Huo, Xianqi Chen

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 621-654, 2023, DOI:10.32604/cmes.2023.025143 - 05 January 2023

    Abstract The spacecraft equipment layout optimization design (SELOD) problems with complicated performance constraints and diversity are studied in this paper. The previous literature uses the gradient-based algorithm to obtain optimized non-overlap layout schemes from randomly initialized cases effectively. However, these local optimal solutions are too difficult to jump out of their current relative geometry relationships, significantly limiting their further improvement in performance indicators. Therefore, considering the geometric diversity of layout schemes is put forward to alleviate this limitation. First, similarity measures, including modified cosine similarity and gaussian kernel function similarity, are introduced into the layout optimization More >

  • Open Access

    ARTICLE

    Ranked-Set Sampling Based Distribution Free Control Chart with Application in CSTR Process

    Ibrahim M. Almanjahie1,2, Zahid Rasheed3,4,*, Majid Khan5, Syed Masroor Anwar6, Ammara Nawaz Cheema7

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2091-2118, 2023, DOI:10.32604/cmes.2023.022201 - 23 November 2022

    Abstract Nonparametric (distribution-free) control charts have been introduced in recent years when quality characteristics do not follow a specific distribution. When the sample selection is prohibitively expensive, we prefer ranked-set sampling over simple random sampling because ranked set sampling-based control charts outperform simple random sampling-based control charts. In this study, we proposed a nonparametric homogeneously weighted moving average based on the Wilcoxon signed-rank test with ranked set sampling () control chart for detecting shifts in the process location of a continuous and symmetric distribution. Monte Carlo simulations are used to obtain the run length characteristics to… More >

  • Open Access

    ARTICLE

    Bayesian Computation for the Parameters of a Zero-Inflated Cosine Geometric Distribution with Application to COVID-19 Pandemic Data

    Sunisa Junnumtuam, Sa-Aat Niwitpong*, Suparat Niwitpong

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1229-1254, 2023, DOI:10.32604/cmes.2022.022098 - 27 October 2022

    Abstract A new three-parameter discrete distribution called the zero-inflated cosine geometric (ZICG) distribution is proposed for the first time herein. It can be used to analyze over-dispersed count data with excess zeros. The basic statistical properties of the new distribution, such as the moment generating function, mean, and variance are presented. Furthermore, confidence intervals are constructed by using the Wald, Bayesian, and highest posterior density (HPD) methods to estimate the true confidence intervals for the parameters of the ZICG distribution. Their efficacies were investigated by using both simulation and real-world data comprising the number of daily More > Graphic Abstract

    Bayesian Computation for the Parameters of a Zero-Inflated Cosine Geometric Distribution with Application to COVID-19 Pandemic Data

  • Open Access

    ARTICLE

    AWK-TIS: An Improved AK-IS Based on Whale Optimization Algorithm and Truncated Importance Sampling for Reliability Analysis

    Qiang Qin1,2,*, Xiaolei Cao1, Shengpeng Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1457-1480, 2023, DOI:10.32604/cmes.2023.022078 - 27 October 2022

    Abstract In this work, an improved active kriging method based on the AK-IS and truncated importance sampling (TIS) method is proposed to efficiently evaluate structural reliability. The novel method called AWK-TIS is inspired by AK-IS and RBF-GA previously published in the literature. The innovation of the AWK-TIS is that TIS is adopted to lessen the sample pool size significantly, and the whale optimization algorithm (WOA) is employed to acquire the optimal Kriging model and the most probable point (MPP). To verify the performance of the AWK-TIS method for structural reliability, four numerical cases which are utilized More >

  • Open Access

    REVIEW

    Enhanced sampling for lipid-protein interactions during membrane dynamics

    DIEGO MASONE1,2,*

    BIOCELL, Vol.47, No.1, pp. 1-14, 2023, DOI:10.32604/biocell.2023.024146 - 26 September 2022

    Abstract The inflexible concept of membrane curvature as an independent property of lipid structures is today obsolete. Lipid bilayers behave as many-body entities with emergent properties that depend on their interactions with the environment. In particular, proteins exert crucial actions on lipid molecules that ultimately condition the collective properties of the membranes. In this review, the potential of enhanced molecular dynamics to address cell-biology problems is discussed. The cases of membrane deformation, membrane fusion, and the fusion pore are analyzed from the perspective of the dimensionality reduction by collective variables. Coupled lipid-protein interactions as fundamental determinants More >

  • Open Access

    ARTICLE

    Active Kriging-Based Adaptive Importance Sampling for Reliability and Sensitivity Analyses of Stator Blade Regulator

    Hong Zhang1, Lukai Song1,2,*, Guangchen Bai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1871-1897, 2023, DOI:10.32604/cmes.2022.021880 - 20 September 2022

    Abstract

    The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like high-nonlinearity, multi-failure regions, and small failure probability, which brings in unacceptable computing efficiency and accuracy of the current analysis methods. In this case, by fitting the implicit limit state function (LSF) with active Kriging (AK) model and reducing candidate sample pool with adaptive importance sampling (AIS), a novel AK-AIS method is proposed. Herein, the AK model and Markov chain Monte Carlo (MCMC) are first established to identify the most probable failure region(s) (MPFRs), and the adaptive kernel density estimation (AKDE) importance sampling

    More >

  • Open Access

    ARTICLE

    Big Data Analytics: Deep Content-Based Prediction with Sampling Perspective

    Waleed Albattah, Saleh Albahli*

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 531-544, 2023, DOI:10.32604/csse.2023.021548 - 16 August 2022

    Abstract The world of information technology is more than ever being flooded with huge amounts of data, nearly 2.5 quintillion bytes every day. This large stream of data is called big data, and the amount is increasing each day. This research uses a technique called sampling, which selects a representative subset of the data points, manipulates and analyzes this subset to identify patterns and trends in the larger dataset being examined, and finally, creates models. Sampling uses a small proportion of the original data for analysis and model training, so that it is relatively faster while… More >

Displaying 31-40 on page 4 of 100. Per Page