Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (112)
  • Open Access

    ARTICLE

    Oversampling Method Based on Gaussian Distribution and K-Means Clustering

    Masoud Muhammed Hassan1, Adel Sabry Eesa1,*, Ahmed Jameel Mohammed2, Wahab Kh. Arabo1

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 451-469, 2021, DOI:10.32604/cmc.2021.018280 - 04 June 2021

    Abstract Learning from imbalanced data is one of the greatest challenging problems in binary classification, and this problem has gained more importance in recent years. When the class distribution is imbalanced, classical machine learning algorithms tend to move strongly towards the majority class and disregard the minority. Therefore, the accuracy may be high, but the model cannot recognize data instances in the minority class to classify them, leading to many misclassifications. Different methods have been proposed in the literature to handle the imbalance problem, but most are complicated and tend to simulate unnecessary noise. In this More >

  • Open Access

    ARTICLE

    Multi-Class Sentiment Analysis of Social Media Data with Machine Learning Algorithms

    Galimkair Mutanov, Vladislav Karyukin*, Zhanl Mamykova

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 913-930, 2021, DOI:10.32604/cmc.2021.017827 - 04 June 2021

    Abstract The volume of social media data on the Internet is constantly growing. This has created a substantial research field for data analysts. The diversity of articles, posts, and comments on news websites and social networks astonishes imagination. Nevertheless, most researchers focus on posts on Twitter that have a specific format and length restriction. The majority of them are written in the English language. As relatively few works have paid attention to sentiment analysis in the Russian and Kazakh languages, this article thoroughly analyzes news posts in the Kazakhstan media space. The amassed datasets include texts… More >

  • Open Access

    ARTICLE

    Improved Attribute Chain Sampling Plan for Darna Distribution

    Harsh Tripathi1, Amer Ibrahim Al-Omari2, Mahendra Saha1, Ayed R. A. Alanzi3,*

    Computer Systems Science and Engineering, Vol.38, No.3, pp. 381-392, 2021, DOI:10.32604/csse.2021.015624 - 19 May 2021

    Abstract Recently, the Darna distribution has been introduced as a new lifetime distribution. The two-parameter Darna distribution represents is a mixture of two well-known gamma and exponential distributions. A manufacturer or an engineer of products conducts life testing to examine whether the quality level of products meets the customer’s requirements, such as reliability or the minimum lifetime. In this article, an attribute modified chain sampling inspection plan based on the time truncated life test is proposed for items whose lifetime follows the Darna distribution. The plan parameters, including the sample size, the acceptance number, and the… More >

  • Open Access

    ARTICLE

    Assessing the Performance of Some Ranked Set Sampling Designs Using HybridApproach

    Mohamed. A. H. Sabry1,*, Ehab M. Almetwally2, Hisham M. Almongy3, Gamal M. Ibrahim4

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3737-3753, 2021, DOI:10.32604/cmc.2021.017510 - 06 May 2021

    Abstract In this paper, a joint analysis consisting of goodness-of-fit tests and Markov chain Monte Carlo simulations are used to assess the performance of some ranked set sampling designs. The Markov chain Monte Carlo simulations are conducted when Bayesian methods with Jeffery’s priors of the unknown parameters of Weibull distribution are used, while the goodness of fit analysis is conducted when the likelihood estimators are used and the corresponding empirical distributions are obtained. The ranked set sampling designs considered in this research are the usual ranked set sampling, extreme ranked set sampling, median ranked set sampling, More >

  • Open Access

    ARTICLE

    L-Moments Based Calibrated Variance Estimators Using Double Stratified Sampling

    Usman Shahzad1,2,*, Ishfaq Ahmad1, Ibrahim Mufrah Almanjahie3,4, Nadia H.Al –Noor5

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3411-3430, 2021, DOI:10.32604/cmc.2021.017046 - 06 May 2021

    Abstract Variance is one of the most vital measures of dispersion widely employed in practical aspects. A commonly used approach for variance estimation is the traditional method of moments that is strongly influenced by the presence of extreme values, and thus its results cannot be relied on. Finding momentum from Koyuncu’s recent work, the present paper focuses first on proposing two classes of variance estimators based on linear moments (L-moments), and then employing them with auxiliary data under double stratified sampling to introduce a new class of calibration variance estimators using important properties of L-moments (L-location, More >

  • Open Access

    ABSTRACT

    Phase analysis for out-of-plane displacement measurement using laser lines generated in camera with diffraction grating

    Wei Jiang1,*, Takuya Hara1, Motoharu Fujigaki1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 22-23, 2021, DOI:10.32604/icces.2021.08551

    Abstract In this study, a sampling moire method in which parallel laser lines were generated in a camera using a diffraction grating was proposed. A green laser of line projection function, a diffraction grating and an industrial camera were used as an experimental device. Object images with laser line projection before and after displacement were taken by the camera. Displacements that calculated by a sampling moire method and a method of averaging center-ofgravity were be compared. Results show that the proposed method is more precision than method of averaging center-of-gravity. More >

  • Open Access

    ARTICLE

    Dealing with the Class Imbalance Problem in the Detection of Fake Job Descriptions

    Minh Thanh Vo1, Anh H. Vo2, Trang Nguyen3, Rohit Sharma4, Tuong Le2,5,*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 521-535, 2021, DOI:10.32604/cmc.2021.015645 - 22 March 2021

    Abstract In recent years, the detection of fake job descriptions has become increasingly necessary because social networking has changed the way people access burgeoning information in the internet age. Identifying fraud in job descriptions can help jobseekers to avoid many of the risks of job hunting. However, the problem of detecting fake job descriptions comes up against the problem of class imbalance when the number of genuine jobs exceeds the number of fake jobs. This causes a reduction in the predictability and performance of traditional machine learning models. We therefore present an efficient framework that uses… More >

  • Open Access

    ARTICLE

    New Improved Ranked Set Sampling Designs with an Application to Real Data

    Amer Ibrahim Al-Omari1, Ibrahim M. Almanjahie2,3,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1503-1522, 2021, DOI:10.32604/cmc.2021.015047 - 05 February 2021

    Abstract This article proposes two new Ranked Set Sampling (RSS) designs for estimating the population parameters: Simple Z Ranked Set Sampling (SZRSS) and Generalized Z Ranked Set Sampling (GZRSS). These designs provide unbiased estimators for the mean of symmetric distributions. It is shown that for non-uniform symmetric distributions, the estimators of the mean under the suggested designs are more efficient than those obtained by RSS, Simple Random Sampling (SRS), extreme RSS and truncation based RSS designs. Also, the proposed RSS schemes outperform other RSS schemes and provide more efficient estimates than their competitors under imperfect rankings. More >

  • Open Access

    ARTICLE

    Power Inverted Topp–Leone Distribution in Acceptance Sampling Plans

    Tahani A. Abushal1, Amal S. Hassan2, Ahmed R. El-Saeed3, Said G. Nassr4,*

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 991-1011, 2021, DOI:10.32604/cmc.2021.014620 - 12 January 2021

    Abstract We introduce a new two-parameter model related to the inverted Topp–Leone distribution called the power inverted Topp–Leone (PITL) distribution. Major properties of the PITL distribution are stated; including; quantile measures, moments, moment generating function, probability weighted moments, Bonferroni and Lorenz curve, stochastic ordering, incomplete moments, residual life function, and entropy measure. Acceptance sampling plans are developed for the PITL distribution, when the life test is truncated at a pre-specified time. The truncation time is assumed to be the median lifetime of the PITL distribution with pre-specified factors. The minimum sample size necessary to ensure the… More >

  • Open Access

    ARTICLE

    Acceptance Sampling Plans with Truncated Life Tests for the Length-Biased Weighted Lomax Distribution

    Amer Ibrahim Al-Omari1,*, Ibrahim M. Almanjahie2,3, Olena Kravchuk4

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 285-301, 2021, DOI:10.32604/cmc.2021.014537 - 12 January 2021

    Abstract In this paper, we considered the Length-biased weighted Lomax distribution and constructed new acceptance sampling plans (ASPs) where the life test is assumed to be truncated at a pre-assigned time. For the new suggested ASPs, the tables of the minimum samples sizes needed to assert a specific mean life of the test units are obtained. In addition, the values of the corresponding operating characteristic function and the associated producer’s risks are calculated. Analyses of two real data sets are presented to investigate the applicability of the proposed acceptance sampling plans; one data set contains the More >

Displaying 71-80 on page 8 of 112. Per Page