Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (447)
  • Open Access

    ARTICLE

    Exploiting Deep Learning Techniques for Colon Polyp Segmentation

    Daniel Sierra-Sosa1,*, Sebastian Patino-Barrientos2, Begonya Garcia-Zapirain3, Cristian Castillo-Olea3, Adel Elmaghraby1

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1629-1644, 2021, DOI:10.32604/cmc.2021.013618 - 05 February 2021

    Abstract As colon cancer is among the top causes of death, there is a growing interest in developing improved techniques for the early detection of colon polyps. Given the close relation between colon polyps and colon cancer, their detection helps avoid cancer cases. The increment in the availability of colorectal screening tests and the number of colonoscopies have increased the burden on the medical personnel. In this article, the application of deep learning techniques for the detection and segmentation of colon polyps in colonoscopies is presented. Four techniques were implemented and evaluated: Mask-RCNN, PANet, Cascade R-CNN… More >

  • Open Access

    ARTICLE

    ASRNet: Adversarial Segmentation and Registration Networks for Multispectral Fundus Images

    Yanyun Jiang1, Yuanjie Zheng1,2,*, Xiaodan Sui1, Wanzhen Jiao3, Yunlong He4, Weikuan Jia1

    Computer Systems Science and Engineering, Vol.36, No.3, pp. 537-549, 2021, DOI:10.32604/csse.2021.014578 - 18 January 2021

    Abstract Multispectral imaging (MSI) technique is often used to capture images of the fundus by illuminating it with different wavelengths of light. However, these images are taken at different points in time such that eyeball movements can cause misalignment between consecutive images. The multispectral image sequence reveals important information in the form of retinal and choroidal blood vessel maps, which can help ophthalmologists to analyze the morphology of these blood vessels in detail. This in turn can lead to a high diagnostic accuracy of several diseases. In this paper, we propose a novel semi-supervised end-to-end deep… More >

  • Open Access

    ARTICLE

    Automatic Segmentation of Liver from Abdominal Computed Tomography Images Using Energy Feature

    Prabakaran Rajamanickam1, Shiloah Elizabeth Darmanayagam1,*, Sunil Retmin Raj Cyril Raj2

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 709-722, 2021, DOI:10.32604/cmc.2021.014347 - 12 January 2021

    Abstract Liver Segmentation is one of the challenging tasks in detecting and classifying liver tumors from Computed Tomography (CT) images. The segmentation of hepatic organ is more intricate task, owing to the fact that it possesses a sizeable quantum of vascularization. This paper proposes an algorithm for automatic seed point selection using energy feature for use in level set algorithm for segmentation of liver region in CT scans. The effectiveness of the method can be determined when used in a model to classify the liver CT images as tumorous or not. This involves segmentation of the… More >

  • Open Access

    ARTICLE

    A Weighted Spatially Constrained Finite Mixture Model for Image Segmentation

    Mohammad Masroor Ahmed1,*, Saleh Al Shehri2, Jawad Usman Arshed3, Mahmood Ul Hassan4, Muzammil Hussain5, Mehtab Afzal6

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 171-185, 2021, DOI:10.32604/cmc.2021.014141 - 12 January 2021

    Abstract Spatially Constrained Mixture Model (SCMM) is an image segmentation model that works over the framework of maximum a-posteriori and Markov Random Field (MAP-MRF). It developed its own maximization step to be used within this framework. This research has proposed an improvement in the SCMM’s maximization step for segmenting simulated brain Magnetic Resonance Images (MRIs). The improved model is named as the Weighted Spatially Constrained Finite Mixture Model (WSCFMM). To compare the performance of SCMM and WSCFMM, simulated T1-Weighted normal MRIs were segmented. A region of interest (ROI) was extracted from segmented images. The similarity level More >

  • Open Access

    ARTICLE

    Machine Learning Enabled Early Detection of Breast Cancer by Structural Analysis of Mammograms

    Mavra Mehmood1, Ember Ayub1, Fahad Ahmad1,6,*, Madallah Alruwaili2, Ziyad A. Alrowaili3, Saad Alanazi2, Mamoona Humayun2, Muhammad Rizwan1, Shahid Naseem4, Tahir Alyas5

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 641-657, 2021, DOI:10.32604/cmc.2021.013774 - 12 January 2021

    Abstract Clinical image processing plays a significant role in healthcare systems and is currently a widely used methodology. In carcinogenic diseases, time is crucial; thus, an image’s accurate analysis can help treat disease at an early stage. Ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) are common types of malignancies that affect both women and men. The number of cases of DCIS and LCIS has increased every year since 2002, while it still takes a considerable amount of time to recommend a controlling technique. Image processing is a powerful technique to analyze preprocessed… More >

  • Open Access

    ARTICLE

    Deep Learning in DXA Image Segmentation

    Dildar Hussain1, Rizwan Ali Naqvi2, Woong-Kee Loh3, Jooyoung Lee1,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2587-2598, 2021, DOI:10.32604/cmc.2021.013031 - 28 December 2020

    Abstract Many existing techniques to acquire dual-energy X-ray absorptiometry (DXA) images are unable to accurately distinguish between bone and soft tissue. For the most part, this failure stems from bone shape variability, noise and low contrast in DXA images, inconsistent X-ray beam penetration producing shadowing effects, and person-to-person variations. This work explores the feasibility of using state-of-the-art deep learning semantic segmentation models, fully convolutional networks (FCNs), SegNet, and U-Net to distinguish femur bone from soft tissue. We investigated the performance of deep learning algorithms with reference to some of our previously applied conventional image segmentation techniques… More >

  • Open Access

    REVIEW

    Detection and Grading of Diabetic Retinopathy in Retinal Images Using Deep Intelligent Systems: A Comprehensive Review

    H. Asha Gnana Priya1, J. Anitha1, Daniela Elena Popescu2, Anju Asokan1, D. Jude Hemanth1, Le Hoang Son3,4,*

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2771-2786, 2021, DOI:10.32604/cmc.2021.012907 - 28 December 2020

    Abstract Diabetic Retinopathy (DR) is an eye disease that mainly affects people with diabetes. People affected by DR start losing their vision from an early stage even though the symptoms are identified only at the later stage. Once the vision is lost, it cannot be regained but can be prevented from causing any further damage. Early diagnosis of DR is required for preventing vision loss, for which a trained ophthalmologist is required. The clinical practice is time-consuming and is not much successful in identifying DR at early stages. Hence, Computer-Aided Diagnosis (CAD) system is a suitable More >

  • Open Access

    ARTICLE

    Fully Automatic Segmentation of Gynaecological Abnormality Using a New Viola–Jones Model

    Ihsan Jasim Hussein1, M. A. Burhanuddin2, Mazin Abed Mohammed3,*, Mohamed Elhoseny4, Begonya Garcia-Zapirain5, Marwah Suliman Maashi6, Mashael S. Maashi7

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3161-3182, 2021, DOI:10.32604/cmc.2021.012691 - 28 December 2020

    Abstract One of the most complex tasks for computer-aided diagnosis (Intelligent decision support system) is the segmentation of lesions. Thus, this study proposes a new fully automated method for the segmentation of ovarian and breast ultrasound images. The main contributions of this research is the development of a novel Viola–James model capable of segmenting the ultrasound images of breast and ovarian cancer cases. In addition, proposed an approach that can efficiently generate region-of-interest (ROI) and new features that can be used in characterizing lesion boundaries. This study uses two databases in training and testing the proposed… More >

  • Open Access

    ARTICLE

    Recognition and Classification of Pomegranate Leaves Diseases by Image Processing and Machine Learning Techniques

    Mangena Venu Madhavan1, Dang Ngoc Hoang Thanh2, Aditya Khamparia1,*, Sagar Pande1, Rahul Malik1, Deepak Gupta3

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2939-2955, 2021, DOI:10.32604/cmc.2021.012466 - 28 December 2020

    Abstract Disease recognition in plants is one of the essential problems in agricultural image processing. This article focuses on designing a framework that can recognize and classify diseases on pomegranate plants exactly. The framework utilizes image processing techniques such as image acquisition, image resizing, image enhancement, image segmentation, ROI extraction (region of interest), and feature extraction. An image dataset related to pomegranate leaf disease is utilized to implement the framework, divided into a training set and a test set. In the implementation process, techniques such as image enhancement and image segmentation are primarily used for identifying More >

  • Open Access

    ARTICLE

    Automatic and Robust Segmentation of Multiple Sclerosis Lesions with Convolutional Neural Networks

    H. M. Rehan Afzal1,2,*, Suhuai Luo1, Saadallah Ramadan1,2, Jeannette Lechner-Scott1,2,3, Mohammad Ruhul Amin3, Jiaming Li4, M. Kamran Afzal5

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 977-991, 2021, DOI:10.32604/cmc.2020.012448 - 30 October 2020

    Abstract The diagnosis of multiple sclerosis (MS) is based on accurate detection of lesions on magnetic resonance imaging (MRI) which also provides ongoing essential information about the progression and status of the disease. Manual detection of lesions is very time consuming and lacks accuracy. Most of the lesions are difficult to detect manually, especially within the grey matter. This paper proposes a novel and fully automated convolution neural network (CNN) approach to segment lesions. The proposed system consists of two 2D patchwise CNNs which can segment lesions more accurately and robustly. The first CNN network is… More >

Displaying 381-390 on page 39 of 447. Per Page