Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (520)
  • Open Access

    ARTICLE

    Advanced Guided Whale Optimization Algorithm for Feature Selection in BlazePose Action Recognition

    Motasem S. Alsawadi1,*, El-Sayed M. El-kenawy2, Miguel Rio1

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2767-2782, 2023, DOI:10.32604/iasc.2023.039440 - 11 September 2023

    Abstract The BlazePose, which models human body skeletons as spatiotemporal graphs, has achieved fantastic performance in skeleton-based action identification. Skeleton extraction from photos for mobile devices has been made possible by the BlazePose system. A Spatial-Temporal Graph Convolutional Network (STGCN) can then forecast the actions. The Spatial-Temporal Graph Convolutional Network (STGCN) can be improved by simply replacing the skeleton input data with a different set of joints that provide more information about the activity of interest. On the other hand, existing approaches require the user to manually set the graph’s topology and then fix it across… More >

  • Open Access

    ARTICLE

    Genetic Algorithm Combined with the K-Means Algorithm: A Hybrid Technique for Unsupervised Feature Selection

    Hachemi Bennaceur, Meznah Almutairy, Norah Alhussain*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2687-2706, 2023, DOI:10.32604/iasc.2023.038723 - 11 September 2023

    Abstract The dimensionality of data is increasing very rapidly, which creates challenges for most of the current mining and learning algorithms, such as large memory requirements and high computational costs. The literature includes much research on feature selection for supervised learning. However, feature selection for unsupervised learning has only recently been studied. Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate. This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS, which combines the genetic algorithm (GA) approach with the classical k-Means algorithm. In… More >

  • Open Access

    ARTICLE

    Deep Learning Model for Big Data Classification in Apache Spark Environment

    T. M. Nithya1,*, R. Umanesan2, T. Kalavathidevi3, C. Selvarathi4, A. Kavitha5

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2537-2547, 2023, DOI:10.32604/iasc.2022.028804 - 11 September 2023

    Abstract Big data analytics is a popular research topic due to its applicability in various real time applications. The recent advent of machine learning and deep learning models can be applied to analyze big data with better performance. Since big data involves numerous features and necessitates high computational time, feature selection methodologies using metaheuristic optimization algorithms can be adopted to choose optimum set of features and thereby improves the overall classification performance. This study proposes a new sigmoid butterfly optimization method with an optimum gated recurrent unit (SBOA-OGRU) model for big data classification in Apache Spark. More >

  • Open Access

    ARTICLE

    A Machine Learning-Based Distributed Denial of Service Detection Approach for Early Warning in Internet Exchange Points

    Salem Alhayani*, Diane R. Murphy

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2235-2259, 2023, DOI:10.32604/cmc.2023.038003 - 30 August 2023

    Abstract The Internet service provider (ISP) is the heart of any country’s Internet infrastructure and plays an important role in connecting to the World Wide Web. Internet exchange point (IXP) allows the interconnection of two or more separate network infrastructures. All Internet traffic entering a country should pass through its IXP. Thus, it is an ideal location for performing malicious traffic analysis. Distributed denial of service (DDoS) attacks are becoming a more serious daily threat. Malicious actors in DDoS attacks control numerous infected machines known as botnets. Botnets are used to send numerous fake requests to… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Optimization Algorithm for Materialized View Selection from Data Warehouse Environments

    Popuri Srinivasarao, Aravapalli Rama Satish*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1527-1547, 2023, DOI:10.32604/csse.2023.038951 - 28 July 2023

    Abstract Responding to complex analytical queries in the data warehouse (DW) is one of the most challenging tasks that require prompt attention. The problem of materialized view (MV) selection relies on selecting the most optimal views that can respond to more queries simultaneously. This work introduces a combined approach in which the constraint handling process is combined with metaheuristics to select the most optimal subset of DW views from DWs. The proposed work initially refines the solution to enable a feasible selection of views using the ensemble constraint handling technique (ECHT). The constraints such as self-adaptive… More >

  • Open Access

    ARTICLE

    An Optimized Feature Selection and Hyperparameter Tuning Framework for Automated Heart Disease Diagnosis

    Saleh Ateeq Almutairi*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2599-2624, 2023, DOI:10.32604/csse.2023.041609 - 28 July 2023

    Abstract Heart disease is a primary cause of death worldwide and is notoriously difficult to cure without a proper diagnosis. Hence, machine learning (ML) can reduce and better understand symptoms associated with heart disease. This study aims to develop a framework for the automatic and accurate classification of heart disease utilizing machine learning algorithms, grid search (GS), and the Aquila optimization algorithm. In the proposed approach, feature selection is used to identify characteristics of heart disease by using a method for dimensionality reduction. First, feature selection is accomplished with the help of the Aquila algorithm. Then,… More >

  • Open Access

    ARTICLE

    Edge Cloud Selection in Mobile Edge Computing (MEC)-Aided Applications for Industrial Internet of Things (IIoT) Services

    Dae-Young Kim1, SoYeon Lee2, MinSeung Kim2, Seokhoon Kim1,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2049-2060, 2023, DOI:10.32604/csse.2023.040473 - 28 July 2023

    Abstract In many IIoT architectures, various devices connect to the edge cloud via gateway systems. For data processing, numerous data are delivered to the edge cloud. Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency. There are two types of costs for this kind of IoT network: a communication cost and a computing cost. For service efficiency, the communication cost of data transmission should be minimized, and the computing cost in the edge cloud should be also minimized. Therefore, in this paper, the communication cost for data transmission is defined as… More >

  • Open Access

    ARTICLE

    Optimizing Region of Interest Selection for Effective Embedding in Video Steganography Based on Genetic Algorithms

    Nizheen A. Ali1, Ramadhan J. Mstafa2,3,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1451-1469, 2023, DOI:10.32604/csse.2023.039957 - 28 July 2023

    Abstract With the widespread use of the internet, there is an increasing need to ensure the security and privacy of transmitted data. This has led to an intensified focus on the study of video steganography, which is a technique that hides data within a video cover to avoid detection. The effectiveness of any steganography method depends on its ability to embed data without altering the original video’s quality while maintaining high efficiency. This paper proposes a new method to video steganography, which involves utilizing a Genetic Algorithm (GA) for identifying the Region of Interest (ROI) in… More >

  • Open Access

    ARTICLE

    Enhanced Multi-Objective Grey Wolf Optimizer with Lévy Flight and Mutation Operators for Feature Selection

    Qasem Al-Tashi1,*, Tareq M Shami2, Said Jadid Abdulkadir3, Emelia Akashah Patah Akhir3, Ayed Alwadain4, Hitham Alhussain3, Alawi Alqushaibi3, Helmi MD Rais3, Amgad Muneer1, Maliazurina B. Saad1, Jia Wu1, Seyedali Mirjalili5,6,7,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1937-1966, 2023, DOI:10.32604/csse.2023.039788 - 28 July 2023

    Abstract The process of selecting features or reducing dimensionality can be viewed as a multi-objective minimization problem in which both the number of features and error rate must be minimized. While it is a multi-objective problem, current methods tend to treat feature selection as a single-objective optimization task. This paper presents enhanced multi-objective grey wolf optimizer with Lévy flight and mutation phase (LMuMOGWO) for tackling feature selection problems. The proposed approach integrates two effective operators into the existing Multi-objective Grey Wolf optimizer (MOGWO): a Lévy flight and a mutation operator. The Lévy flight, a type of… More >

  • Open Access

    REVIEW

    A Survey on Acute Leukemia Expression Data Classification Using Ensembles

    Abdel Nasser H. Zaied1, Ehab Rushdy2, Mona Gamal3,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1349-1364, 2023, DOI:10.32604/csse.2023.033596 - 28 July 2023

    Abstract Acute leukemia is an aggressive disease that has high mortality rates worldwide. The error rate can be as high as 40% when classifying acute leukemia into its subtypes. So, there is an urgent need to support hematologists during the classification process. More than two decades ago, researchers used microarray gene expression data to classify cancer and adopted acute leukemia as a test case. The high classification accuracy they achieved confirmed that it is possible to classify cancer subtypes using microarray gene expression data. Ensemble machine learning is an effective method that combines individual classifiers to… More >

Displaying 91-100 on page 10 of 520. Per Page