Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (551)
  • Open Access

    ARTICLE

    Gender Forecast Based on the Information about People Who Violated Traffic Principle

    Rui Li1, Guang Sun1,*, Jingyi He1, Ying Jiang1, Rui Sun1, Haixia Li1, Peng Guo1,2, Jianjun Zhang3

    Journal on Internet of Things, Vol.2, No.2, pp. 65-73, 2020, DOI:10.32604/jiot.2020.09868 - 14 September 2020

    Abstract User portrait has been a booming concept in big data industry in recent years which is a direct way to restore users’ information. When it talks about user portrait, it will be connected with precise marketing and operating. However, there are more ways which can reflect the good use of user portrait. Commercial use is the most acceptable use but it also can be used in different industries widely. The goal of this paper is forecasting gender by user portrait and making it useful in transportation safety. It can extract the information from people who More >

  • Open Access

    ARTICLE

    Global Levy Flight of Cuckoo Search with Particle Swarm Optimization for Effective Cluster Head Selection in Wireless Sensor Network

    Vijayalakshmi. K1,*, Anandan. P2

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 303-311, 2020, DOI:10.31209/2020.100000165

    Abstract The advent of sensors that are light in weight, small-sized, low power and are enabled by wireless network has led to growth of Wireless Sensor Networks (WSNs) in multiple areas of applications. The key problems faced in WSNs are decreased network lifetime and time delay in transmission of data. Several key issues in the WSN design can be addressed using the Multi-Objective Optimization (MOO) Algorithms. The selection of the Cluster Head is a NP Hard optimization problem in nature. The CH selection is also challenging as the sensor nodes are organized in clusters. Through partitioning… More >

  • Open Access

    ARTICLE

    Effective and Efficient Ranking and Re-Ranking Feature Selector for Healthcare Analytics

    S.Ilangovan1,*, A. Vincent Antony Kumar2

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 261-268, 2020, DOI:10.31209/2019.100000154

    Abstract In this work, a Novel Feature selection framework called SU embedded PSO Feature Selector has been proposed (SU-PSO) towards the selection of optimal feature subset for the improvement of detection performance of classifiers. The feature space ranking is done through the Symmetrical Uncertainty method. Further, memetic operators of PSO include features and remove features are used to choose relevant features and the best of best features are selected using PSO. The proposed feature selector efficiently removes not only irrelevant but also redundant features. Performance metric such as classification accuracy, subset of features selected and running More >

  • Open Access

    ARTICLE

    A Reinforcement Learning System for Fault Detection and Diagnosis in Mechatronic Systems

    Wanxin Zhang1,*, Jihong Zhu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 1119-1130, 2020, DOI:10.32604/cmes.2020.010986 - 21 August 2020

    Abstract With the increasing demand for the automation of operations and processes in mechatronic systems, fault detection and diagnosis has become a major topic to guarantee the process performance. There exist numerous studies on the topic of applying artificial intelligence methods for fault detection and diagnosis. However, much of the focus has been given on the detection of faults. In terms of the diagnosis of faults, on one hand, assumptions are required, which restricts the diagnosis range. On the other hand, different faults with similar symptoms cannot be distinguished, especially when the model is not trained… More >

  • Open Access

    ARTICLE

    Research on Data Extraction and Analysis of Software Defect in IoT Communication Software

    Wenbin Bi1, Fang Yu2, Ning Cao3, Wei Huo3, Guangsheng Cao4, *, Xiuli Han5, Lili Sun6, Russell Higgs7

    CMC-Computers, Materials & Continua, Vol.65, No.2, pp. 1837-1854, 2020, DOI:10.32604/cmc.2020.010420 - 20 August 2020

    Abstract Software defect feature selection has problems of feature space dimensionality reduction and large search space. This research proposes a defect prediction feature selection framework based on improved shuffled frog leaping algorithm (ISFLA).Using the two-level structure of the framework and the improved hybrid leapfrog algorithm's own advantages, the feature values are sorted, and some features with high correlation are selected to avoid other heuristic algorithms in the defect prediction that are easy to produce local The case where the convergence rate of the optimal or parameter optimization process is relatively slow. The framework improves generalization of… More >

  • Open Access

    ARTICLE

    Applying Feature-Weighted Gradient Decent K-Nearest Neighbor to Select Promising Projects for Scientific Funding

    Chuqing Zhang1, Jiangyuan Yao2, *, Guangwu Hu3, Thomas Schøtt4

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1741-1753, 2020, DOI:10.32604/cmc.2020.010306 - 30 June 2020

    Abstract Due to its outstanding ability in processing large quantity and high-dimensional data, machine learning models have been used in many cases, such as pattern recognition, classification, spam filtering, data mining and forecasting. As an outstanding machine learning algorithm, K-Nearest Neighbor (KNN) has been widely used in different situations, yet in selecting qualified applicants for winning a funding is almost new. The major problem lies in how to accurately determine the importance of attributes. In this paper, we propose a Feature-weighted Gradient Decent K-Nearest Neighbor (FGDKNN) method to classify funding applicants in to two types: approved More >

  • Open Access

    ARTICLE

    A New Adaptive Regularization Parameter Selection Based on Expected Patch Log Likelihood

    Jianwei Zhang1, Ze Qin1, Shunfeng Wang1, *

    Journal of Cyber Security, Vol.2, No.1, pp. 25-36, 2020, DOI:10.32604/jcs.2020.06429

    Abstract Digital images have been applied to various areas such as evidence in courts. However, it always suffers from noise by criminals. This type of computer network security has become a hot issue that can’t be ignored. In this paper, we focus on noise removal so as to provide guarantees for computer network security. Firstly, we introduce a well-known denoising method called Expected Patch Log Likelihood (EPLL) with Gaussian Mixture Model as its prior. This method achieves exciting results in noise removal. However, there remain problems to be solved such as preserving the edge and meaningful… More >

  • Open Access

    ARTICLE

    Air Quality Prediction Based on Kohonen Clustering and ReliefF Feature Selection

    Bolun Chen1, 2, Guochang Zhu1, *, Min Ji1, Yongtao Yu1, Jianyang Zhao1, Wei Liu3

    CMC-Computers, Materials & Continua, Vol.64, No.2, pp. 1039-1049, 2020, DOI:10.32604/cmc.2020.010583 - 10 June 2020

    Abstract Air quality prediction is an important part of environmental governance. The accuracy of the air quality prediction also affects the planning of people’s outdoor activities. How to mine effective information from historical data of air pollution and reduce unimportant factors to predict the law of pollution change is of great significance for pollution prevention, pollution control and pollution early warning. In this paper, we take into account that there are different trends in air pollutants and that different climatic factors have different effects on air pollutants. Firstly, the data of air pollutants in different cities… More >

  • Open Access

    ARTICLE

    Manufacturing Process Selection of “Green” Oil Palm Natural Fiber Reinforced Polyurethane Composites Using Hybrid TEA Criteria Requirement and AHP Method for Automotive Crash Box

    N. S. B. Yusof1,2, S. M. Sapuan1,3,*, M. T. H. Sultan1,4, M. Jawaid1

    Journal of Renewable Materials, Vol.8, No.6, pp. 647-660, 2020, DOI:10.32604/jrm.2020.08309 - 12 May 2020

    Abstract In this study, the best manufacturing process will be selected to build an automotive crash box using green oil palm natural fibre-reinforced polyurethane composite materials. This paper introduces an approach consist of technical aspects (T), the economic point of view (E) and availability (A), and it’s also called as TEA requirement. This approach was developed with the goal of assisting the design engineer in the selection of the best manufacturing process during the design phase at the criteria selection stage. In this study, the TEA requirement will integrate with the analytical hierarchy process (AHP) to… More >

  • Open Access

    ARTICLE

    MII: A Novel Text Classification Model Combining Deep Active Learning with BERT

    Anman Zhang1, Bohan Li1, 2, 3, *, Wenhuan Wang1, Shuo Wan1, Weitong Chen4

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1499-1514, 2020, DOI:10.32604/cmc.2020.09962 - 30 April 2020

    Abstract Active learning has been widely utilized to reduce the labeling cost of supervised learning. By selecting specific instances to train the model, the performance of the model was improved within limited steps. However, rare work paid attention to the effectiveness of active learning on it. In this paper, we proposed a deep active learning model with bidirectional encoder representations from transformers (BERT) for text classification. BERT takes advantage of the self-attention mechanism to integrate contextual information, which is beneficial to accelerate the convergence of training. As for the process of active learning, we design an More >

Displaying 481-490 on page 49 of 551. Per Page