Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (181)
  • Open Access

    ARTICLE

    Sentence Similarity Measurement with Convolutional Neural Networks Using Semantic and Syntactic Features

    Shiru Zhang1, Zhiyao Liang1, *, Jian Lin2

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 943-957, 2020, DOI:10.32604/cmc.2020.08800 - 01 May 2020

    Abstract Calculating the semantic similarity of two sentences is an extremely challenging problem. We propose a solution based on convolutional neural networks (CNN) using semantic and syntactic features of sentences. The similarity score between two sentences is computed as follows. First, given a sentence, two matrices are constructed accordingly, which are called the syntax model input matrix and the semantic model input matrix; one records some syntax features, and the other records some semantic features. By experimenting with different arrangements of representing the syntactic and semantic features of the sentences in the matrices, we adopt the… More >

  • Open Access

    ARTICLE

    A Lane Detection Method Based on Semantic Segmentation

    Ling Ding1, 2, Huyin Zhang1, *, Jinsheng Xiao3, *, Cheng Shu3, Shejie Lu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 1039-1053, 2020, DOI:10.32604/cmes.2020.08268 - 01 March 2020

    Abstract This paper proposes a novel method of lane detection, which adopts VGG16 as the basis of convolutional neural network to extract lane line features by cavity convolution, wherein the lane lines are divided into dotted lines and solid lines. Expanding the field of experience through hollow convolution, the full connection layer of the network is discarded, the last largest pooling layer of the VGG16 network is removed, and the processing of the last three convolution layers is replaced by hole convolution. At the same time, CNN adopts the encoder and decoder structure mode, and uses… More >

  • Open Access

    ARTICLE

    A Multi-Scale Network with the Encoder-Decoder Structure for CMR Segmentation

    Chaoyang Xia1, Jing Peng1, Zongqing Ma2, Xiaojie Li1,*

    Journal of Information Hiding and Privacy Protection, Vol.1, No.3, pp. 109-117, 2019, DOI:10.32604/jihpp.2019.07198

    Abstract Cardiomyopathy is one of the most serious public health threats. The precise structural and functional cardiac measurement is an essential step for clinical diagnosis and follow-up treatment planning. Cardiologists are often required to draw endocardial and epicardial contours of the left ventricle (LV) manually in routine clinical diagnosis or treatment planning period. This task is time-consuming and error-prone. Therefore, it is necessary to develop a fully automated end-to-end semantic segmentation method on cardiac magnetic resonance (CMR) imaging datasets. However, due to the low image quality and the deformation caused by heartbeat, there is no effective… More >

  • Open Access

    ARTICLE

    Deep Feature Fusion Model for Sentence Semantic Matching

    Xu Zhang1, Wenpeng Lu1,*, Fangfang Li2,3, Xueping Peng3, Ruoyu Zhang1

    CMC-Computers, Materials & Continua, Vol.61, No.2, pp. 601-616, 2019, DOI:10.32604/cmc.2019.06045

    Abstract Sentence semantic matching (SSM) is a fundamental research in solving natural language processing tasks such as question answering and machine translation. The latest SSM research benefits from deep learning techniques by incorporating attention mechanism to semantically match given sentences. However, how to fully capture the semantic context without losing significant features for sentence encoding is still a challenge. To address this challenge, we propose a deep feature fusion model and integrate it into the most popular deep learning architecture for sentence matching task. The integrated architecture mainly consists of embedding layer, deep feature fusion layer, More >

  • Open Access

    ARTICLE

    Application of Ontology in the Web Information Retrieval

    Zimeng Xing1, Lina Wang1,*, Wenbo Xing2, Yongjun Ren3, Tao Li4, Jinyue Xia5

    Journal on Big Data, Vol.1, No.2, pp. 79-88, 2019, DOI:10.32604/jbd.2019.05806

    Abstract In this paper, the research advances of ontology and its application are reviewed firstly. With the development of ontology technology, subject-oriented web information retrieval technology combining ontology has been becoming one of the hot scientific issues. The innovative method of the semantic web technology combined with the traditional information retrieval technology is put forward, and the related algorithm based on ontology for judging the relevancy with different topics is also represented, and has proved to be effective in given experiments. More >

  • Open Access

    ARTICLE

    Joint Self-Attention Based Neural Networks for Semantic Relation Extraction

    Jun Sun1, Yan Li1, Yatian Shen1,*, Wenke Ding1, Xianjin Shi1, Lei Zhang1, Xiajiong Shen1, Jing He2

    Journal of Information Hiding and Privacy Protection, Vol.1, No.2, pp. 69-75, 2019, DOI:10.32604/jihpp.2019.06357

    Abstract Relation extraction is an important task in NLP community. However, some models often fail in capturing Long-distance dependence on semantics, and the interaction between semantics of two entities is ignored. In this paper, we propose a novel neural network model for semantic relation classification called joint self-attention bi-LSTM (SA-Bi-LSTM) to model the internal structure of the sentence to obtain the importance of each word of the sentence without relying on additional information, and capture Long-distance dependence on semantics. We conduct experiments using the SemEval-2010 Task 8 dataset. Extensive experiments and the results demonstrated that the More >

  • Open Access

    ARTICLE

    Privacy-Preserving Content-Aware Search Based on Two-Level Index

    Zhangjie Fu1,*, Lili Xia1, Yuling Liu2, Zuwei Tian3

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 473-491, 2019, DOI:10.32604/cmc.2019.03785

    Abstract Nowadays, cloud computing is used more and more widely, more and more people prefer to using cloud server to store data. So, how to encrypt the data efficiently is an important problem. The search efficiency of existed search schemes decreases as the index increases. For solving this problem, we build the two-level index. Simultaneously, for improving the semantic information, the central word expansion is combined. The purpose of privacy-preserving content-aware search by using the two-level index (CKESS) is that the first matching is performed by using the extended central words, then calculate the similarity between More >

  • Open Access

    ARTICLE

    Semantics Analytics of Origin-Destination Flows from Crowd Sensed Big Data

    Ning Cao1,2, Shengfang Li1, Keyong Shen1, Sheng Bin3, Gengxin Sun3,*, Dongjie Zhu4, Xiuli Han5, Guangsheng Cao5, Abraham Campbell6

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 227-241, 2019, DOI:10.32604/cmc.2019.06125

    Abstract Monitoring, understanding and predicting Origin-destination (OD) flows in a city is an important problem for city planning and human activity. Taxi-GPS traces, acted as one kind of typical crowd sensed data, it can be used to mine the semantics of OD flows. In this paper, we firstly construct and analyze a complex network of OD flows based on large-scale GPS taxi traces of a city in China. The spatiotemporal analysis for the OD flows complex network showed that there were distinctive patterns in OD flows. Then based on a novel complex network model, a semantics More >

  • Open Access

    ARTICLE

    Attention-Aware Network with Latent Semantic Analysis for Clothing Invariant Gait Recognition

    Hefei Ling1, Jia Wu1, Ping Li1,*, Jialie Shen2

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1041-1054, 2019, DOI:10.32604/cmc.2019.05605

    Abstract Gait recognition is a complicated task due to the existence of co-factors like carrying conditions, clothing, viewpoints, and surfaces which change the appearance of gait more or less. Among those co-factors, clothing analysis is the most challenging one in the area. Conventional methods which are proposed for clothing invariant gait recognition show the body parts and the underlying relationships from them are important for gait recognition. Fortunately, attention mechanism shows dramatic performance for highlighting discriminative regions. Meanwhile, latent semantic analysis is known for the ability of capturing latent semantic variables to represent the underlying attributes More >

  • Open Access

    ARTICLE

    Natural Language Semantic Construction Based on Cloud Database

    Suzhen Wang1, Lu Zhang1, Yanpiao Zhang1, Jieli Sun1, Chaoyi Pang2, Gang Tian3, Ning Cao4,*

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 603-619, 2018, DOI:10.32604/cmc.2018.03884

    Abstract Natural language semantic construction improves natural language comprehension ability and analytical skills of the machine. It is the basis for realizing the information exchange in the intelligent cloud-computing environment. This paper proposes a natural language semantic construction method based on cloud database, mainly including two parts: natural language cloud database construction and natural language semantic construction. Natural Language cloud database is established on the CloudStack cloud-computing environment, which is composed by corpus, thesaurus, word vector library and ontology knowledge base. In this section, we concentrate on the pretreatment of corpus and the presentation of background… More >

Displaying 171-180 on page 18 of 181. Per Page