Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (135)
  • Open Access

    ARTICLE

    Fuzzy-Based Sentiment Analysis System for Analyzing Student Feedback and Satisfaction

    Yun Wang1, Fazli Subhan2, Shahaboddin Shamshirband3, 4, *, Muhammad Zubair Asghar5, Ikram Ullah5, Ammara Habib5

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 631-655, 2020, DOI:10.32604/cmc.2020.07920

    Abstract The feedback collection and analysis has remained an important subject matter for long. The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis. However, the student expresses their feedback opinions on online social media sites, which need to be analyzed. This study aims at the development of fuzzy-based sentiment analysis system for analyzing student feedback and satisfaction by assigning proper sentiment score to opinion words and polarity shifters present in the input reviews. Our technique computes the sentiment score of student feedback reviews and then applies a fuzzy-logic module to More >

  • Open Access

    ARTICLE

    User Profile System Based on Sentiment Analysis for Mobile Edge Computing

    Sang-Min Park1, Young-Gab Kim2, *

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 569-590, 2020, DOI:10.32604/cmc.2020.08666

    Abstract Emotions of users do not converge in a single application but are scattered across diverse applications. Mobile devices are the closest media for handling user data and these devices have the advantage of integrating private user information and emotions spread over different applications. In this paper, we first analyze user profile on a mobile device by describing the problem of the user sentiment profile system in terms of data granularity, media diversity, and server-side solution. Fine-grained data requires additional data and structural analysis in mobile devices. Media diversity requires standard parameters to integrate user data More >

  • Open Access

    ARTICLE

    Sentiment Analysis Method Based on Kmeans and Online Transfer Learning

    Shengting Wu1, Yuling Liu1,*, Jingwen Wang2, Qi Li1

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1207-1222, 2019, DOI:10.32604/cmc.2019.05835

    Abstract Sentiment analysis is a research hot spot in the field of natural language processing and content security. Traditional methods are often difficult to handle the problems of large difference in sample distribution and the data in the target domain is transmitted in a streaming fashion. This paper proposes a sentiment analysis method based on Kmeans and online transfer learning in the view of fact that most existing sentiment analysis methods are based on transfer learning and offline transfer learning. We first use the Kmeans clustering algorithm to process data from one or multiple source domains More >

  • Open Access

    ARTICLE

    Investigation on the Chinese Text Sentiment Analysis Based on Convolutional Neural Networks in Deep Learning

    Feng Xu1, Xuefen Zhang2,*, Zhanhong Xin1, Alan Yang3

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 697-709, 2019, DOI:10.32604/cmc.2019.05375

    Abstract Nowadays, the amount of wed data is increasing at a rapid speed, which presents a serious challenge to the web monitoring. Text sentiment analysis, an important research topic in the area of natural language processing, is a crucial task in the web monitoring area. The accuracy of traditional text sentiment analysis methods might be degraded in dealing with mass data. Deep learning is a hot research topic of the artificial intelligence in the recent years. By now, several research groups have studied the sentiment analysis of English texts using deep learning methods. In contrary, relatively… More >

  • Open Access

    ARTICLE

    Sentiment Analysis System in Big Data Environment

    Wint Nyein Chan1, Thandar Thein2

    Computer Systems Science and Engineering, Vol.33, No.3, pp. 187-202, 2018, DOI:10.32604/csse.2018.33.187

    Abstract Nowadays, Big Data, a large volume of both structured and unstructured data, is generated from Social Media. Social Media are powerful marketing tools and social big data can offer the business insights. The major challenge facing social big data is attaining efficient techniques to collect a large volume of social data and extract insights from the huge amount of collected data. Sentiment Analysis of social big data can provide business insights by extracting the public opinions. The traditional analytic platforms need to be scaled up for analyzing a large volume of social big data. Social… More >

Displaying 131-140 on page 14 of 135. Per Page