Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access


    Novel Hybrid XGBoost Model to Forecast Soil Shear Strength Based on Some Soil Index Tests

    Ehsan Momeni1, Biao He2, Yasin Abdi3,*, Danial Jahed Armaghani4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2527-2550, 2023, DOI:10.32604/cmes.2023.026531

    Abstract When building geotechnical constructions like retaining walls and dams is of interest, one of the most important factors to consider is the soil’s shear strength parameters. This study makes an effort to propose a novel predictive model of shear strength. The study implements an extreme gradient boosting (XGBoost) technique coupled with a powerful optimization algorithm, the salp swarm algorithm (SSA), to predict the shear strength of various soils. To do this, a database consisting of 152 sets of data is prepared where the shear strength (τ) of the soil is considered as the model output and some soil index tests… More >

  • Open Access


    Potential of Thai Bast Fibers for Injection Molded PLA Composites

    Nina Graupner1,*, Thiprada Poonsawat2, Koranat Narkpiban3,4, Jörg Müssig1

    Journal of Renewable Materials, Vol.11, No.5, pp. 2279-2300, 2023, DOI:10.32604/jrm.2023.025529

    Abstract Thailand has a huge variability of bast fiber plants, some of which have been little researched regarding their applicability in composites. Bast fiber(bundle)s from different species were investigated and incorporated into a polylactide (PLA) matrix by injection molding. Hemp and kenaf were used as well-studied fibers, while roselle, Fryxell and paper mulberry are less extensively characterized. Tensile strength, tensile modulus and interfacial shear strength (IFSS) of single fiber(bundle)s were highest for hemp, followed by kenaf, roselle, Fryxell and paper mulberry. Despite the lower tensile strength and IFSS of paper mulberry, the highest tensile strength was achieved for the paper mulberry/PLA… More > Graphic Abstract

    Potential of Thai Bast Fibers for Injection Molded PLA Composites

  • Open Access


    Effect of Inclined Tension Crack on Rock Slope Stability by SSR Technique

    Ch. Venkat Ramana*, Niranjan Ramchandra Thote, Arun Kumar Singh

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 1205-1214, 2023, DOI:10.32604/iasc.2023.031838

    Abstract The tension cracks and joints in rock or soil slopes affect their failure stability. Prediction of rock or soil slope failure is one of the most challenging tasks in the earth sciences. The actual slopes consist of inhomogeneous materials, complex morphology, and erratic joints. Most studies concerning the failure of rock slopes primarily focused on determining Factor of Safety (FoS) and Critical Slip Surface (CSS). In this article, the effect of inclined tension crack on a rock slope failure is studied numerically with Shear Strength Reduction Factor (SRF) method. An inclined Tension Crack (TC) influences the magnitude and location of… More >

  • Open Access


    Valorization of Tunisian Pomegranate Peel Tannins in Green Adhesives Formulation

    Houda Saad1,2,*, Antonio Pizzi3,4, Bertrand Charrier2, Naceur Ayed1, Karsten Rode5, Fatima Charrier - El Bouhtoury2

    Journal of Renewable Materials, Vol.3, No.1, pp. 34-43, 2015, DOI:10.7569/JRM.2014.634130

    Abstract The possible use of Tunisian pomegranate tannins in wood adhesive formulation was studied for the fi rst time. Colorimetric tests, Fourier transformed infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time-of-fl ight (MALDI-TOF) mass spectrometry were used to examine pomegranate tannins. Analysis showed that pomegranate peels are rich in hydrolyzable tannins. The Stiasny number tests showed the low reactivity of pomegranate tannin extract to formaldehyde and thus the diffi culty of using it in wood adhesive formulation. Thermomechanical analysis (TMA) and strength analysis of pomegranate tannin/hexamine-based resin showed weak bonding properties. More >

  • Open Access


    Modeling and Optimization of the Shear Strength of Cassava Starch-Based Adhesives Using Artificial Intelligence Methods

    Weixing Zhang, Chunxia He*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3263-3283, 2022, DOI:10.32604/jrm.2022.020516

    Abstract With the exponential growth of the computing power, machine learning techniques have been successfully used in various applications. This paper intended to predict and optimize the shear strength of single lap cassava starchbased adhesive joints for comparison with the application of artificial intelligence (AI) methods. The shear strength was firstly determined by the experiment with three independent experimental variables (starch content, NaOH concentration and reaction temperature). The analysis of range (ANORA) and analysis of variance (ANOVA) were applied to investigate the optimal combination and the significance of each factor for the shear strength based on the orthogonal experiment. The performance… More >

  • Open Access


    Comparative Study on Various Strength Parameters of Structural Elements Made from Cross-Laminated Timber

    Mohammad Anwar-Us-Saadat1, Janeshka Goonewardena2, Bidur Kafle2, Mahmud Ashraf2,*, Mahbube Subhani2

    Journal of Renewable Materials, Vol.10, No.6, pp. 1575-1606, 2022, DOI:10.32604/jrm.2022.018919

    Abstract Cross laminated timber (CLT) is an innovative and environment friendly engineered timber product with superior structural performance. CLT offers strong resistance against both in-plane and out-of-plane loading. Hence, it is widely used as floors, roofs or wall elements. Considerable experimental research on CLT under various loading conditions has been done in the recent past. This article presents a comprehensive review of various design methods to determine basic mechanical properties such as tension, compression and rolling shear strength of CLT with primary focus on Norway spruce. All relevant experimental data available from existing literature were collated and consequently been used to… More >

  • Open Access


    Experimental and Numerical Study on the Shear Strength and Strain Energy of Rock Under Constant Shear Stress and Unloading Normal Stress

    Tantan Zhu1, Da Huang2,3,*, Jianxun Chen1, Yanbin Luo1, Longfei Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 79-97, 2021, DOI:10.32604/cmes.2021.014808

    Abstract Excavation and earth surface processes (e.g., river incision) always induce the unloading of stress, which can cause the failure of rocks. To study the shear mechanical behavior of a rock sample under unloading normal stress conditions, a new stress path for direct shear tests was proposed to model the unloading of stress caused by excavation and other processes. The effects of the initial stresses (i.e., the normal stress and shear stress before unloading) on the shear behavior and energy conversion were investigated using laboratory tests and numerical simulations. The shear strength of a rock under constant stress or under unloading… More >

  • Open Access


    Optimization of Roots and Copper Slag to Reinforce Soft Soil Using Response Surface Method

    Dingbang Zhang1, Yi Zhang2,*, Zhiguo Cao3, Tao Cheng1

    Journal of Renewable Materials, Vol.8, No.11, pp. 1391-1409, 2020, DOI:10.32604/jrm.2020.012695

    Abstract In this paper, roots and copper slag were used to overcome the weak- ness and reinforce the mechanical property of soft soil. The experiments were designed by the Response Surface Method (RSM), the content optimizing of the root permeated copper slag mixed soil for achieving appropriate values of shear strength and the final results evaluating were also conducted by RSM. Four independent variables including moisture content (12–21% by dry weight of the mixture), slag content (10–20% by dry weight of the mixture), roots content (0–1.1% by dry weight of the mixture), and aspect ratio of roots L/d (5–40) were studied… More >

  • Open Access

    A Highly Water-Resistant Soy-Based Bioadhesive with 1,4-Butanediol Diglycidyl Ether and its Application on Plywood

    Kun Li, Xiaona Li, Jing Luo, Jingjing Li, Qiang Gao*, Jianzhang Li*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 31-38, 2017, DOI:10.7569/JRM.2017.634131

    Abstract The objective of this study was to use soybean meal and 1,4-butanediol diglycidyl ether (BDDE) to develop a highly water-resistant, soy-based bioadhesive for plywood fabrication. The physical properties and performance characteristics of the resulting adhesive, including solid content, viscosity, water resistance, crystallinity, fracture morphology, thermal behavior, and cracks, were evaluated. The proposed adhesive was compared against the traditional soy adhesive with polyamidoamine-epichlorohydrin (PAE). Results showed that adding 8 g of BDDE into the adhesive formulation improved the solid content up to 32.83% and reduced the viscosity to 27340 mPa·s. The wet shear strength of plywood bonded with the adhesive was… More >

  • Open Access


    Slip surfaces of slope with different shear strength parameters

    Hang Lin, Ping Cao, Jiangteng Li

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.3, pp. 95-96, 2011, DOI:10.3970/icces.2011.020.095

    Abstract The cohesion c and friction angle I are the shear strength parameters influencing the stability of slope. Any of them changes, the factor of safety of slope will change, many work has been done on the relationship between shear strength parameters and factor of safety, but it has seldom been considered in the literature how the slip surface changes at the same time. In the present paper, the strength reduction method is used to find out the effect of shear strength parameters c and Phi to the distribution of slip surface. The study shows that, the slip surface is affected… More >

Displaying 1-10 on page 1 of 13. Per Page  

Share Link