Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (369)
  • Open Access

    ARTICLE

    Experimental Investigation of a Phase-Change Material’s Stabilizing Role in a Pilot of Smart Salt-Gradient Solar Ponds

    Karim Choubani1,2,*, Ons Ghriss3, Nashmi H. Alrasheedi1, Sirin Dhaoui2, Abdallah Bouabidi2

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 341-358, 2024, DOI:10.32604/fhmt.2024.047016

    Abstract Faced with the world’s environmental and energy-related challenges, researchers are turning to innovative, sustainable and intelligent solutions to produce, store, and distribute energy. This work explores the trend of using a smart sensor to monitor the stability and efficiency of a salt-gradient solar pond. Several studies have been conducted to improve the thermal efficiency of salt-gradient solar ponds by introducing other materials. This study investigates the thermal and salinity behaviors of a pilot of smart salt-gradient solar ponds with (SGSP) and without (SGSPP) paraffin wax (PW) as a phase-change material (PCM). Temperature and salinity were… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF ENHANCED NUCLEATE BOILING HEAT TRANSFER ON UNIFORM AND MODULATED POROUS STRUCTURES

    Calvin Hong Lia, G. P. Petersonb,*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-10, 2010, DOI:10.5098/hmt.v1.2.3007

    Abstract An experimental investigation of the Critical Heat Flux (CHF) and heat transfer coefficient (HTC) of two-phase heat transfer of de-Ionized (DI) water, pool boiling was conducted using several kinds of sintered copper microparticle porous uniform and modulated structures. The modulated porous structure reached a heat flux of 450 W/cm2 and a heat transfer coefficient of 230,000 W/m2K. The thick and thin uniform porous structures achieved CHFs of 290 W/cm2 and 227 W/cm2 , respectively, and heat transfer coefficients of 118,000 W/m2K and 104,000 W/m2K. The mechanisms for the dramatically improved CHFs and HTCs were identified with assistance of More >

  • Open Access

    ARTICLE

    Impact of Social Determinants of Health on Self-Perceived Resilience: An Exploratory Study of Two Cohorts of Adults with Congenital Heart Disease

    Albert Osom1, Krysta S. Barton2, Katie Sexton3,4, Lyndia Brumback1, Joyce P. Yi-Frazier4, Abby R. Rosenberg5,6, Ruth Engelberg7, Jill M. Steiner8,*

    Congenital Heart Disease, Vol.19, No.1, pp. 33-48, 2024, DOI:10.32604/chd.2024.046656

    Abstract Social determinants of health (SDOH) affect quality of life. We investigated SDOH impacts on self-perceived resilience among people with adult congenital heart disease (ACHD). Secondary analysis of data from two complementary studies: a survey study conducted May 2021–June 2022 and a qualitative study conducted June 2020–August 2021. Resilience was assessed through CD-RISC10 score (range 0–40, higher scores reflect greater self-perceived resilience) and interview responses. Sociodemographic and SDOH (education, employment, living situation, monetary stability, financial dependency, area deprivation index) data were collected by healthcare record review and self-report. We used linear regression with robust standard errors… More > Graphic Abstract

    Impact of Social Determinants of Health on Self-Perceived Resilience: An Exploratory Study of Two Cohorts of Adults with Congenital Heart Disease

  • Open Access

    ARTICLE

    A Hybrid SIR-Fuzzy Model for Epidemic Dynamics: A Numerical Study

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Yasir Nawaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3417-3434, 2024, DOI:10.32604/cmes.2024.046944

    Abstract This study focuses on the urgent requirement for improved accuracy in disease modeling by introducing a new computational framework called the Hybrid SIR-Fuzzy Model. By integrating the traditional Susceptible-Infectious-Recovered (SIR) model with fuzzy logic, our method effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters. The main aim of this research is to provide a model for disease transmission using fuzzy theory, which can successfully address uncertainty in mathematical modeling. Our main emphasis is on the imprecise transmission rate parameter, utilizing a three-part… More >

  • Open Access

    ARTICLE

    A Study on the Transmission Dynamics of the Omicron Variant of COVID-19 Using Nonlinear Mathematical Models

    S. Dickson1, S. Padmasekaran1, Pushpendra Kumar2,*, Kottakkaran Sooppy Nisar3, Hamidreza Marasi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2265-2287, 2024, DOI:10.32604/cmes.2023.030286

    Abstract This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models, considering the delay in converting susceptible individuals into infected ones. The significant delays eventually resulted in the pandemic’s containment. To ensure the safety of the host population, this concept integrates quarantine and the COVID-19 vaccine. We investigate the stability of the proposed models. The fundamental reproduction number influences stability conditions. According to our findings, asymptomatic cases considerably impact the prevalence of Omicron infection in the community. The real data of the Omicron variant from Chennai, Tamil Nadu, India, is More >

  • Open Access

    ARTICLE

    Stability and Error Analysis of Reduced-Order Methods Based on POD with Finite Element Solutions for Nonlocal Diffusion Problems

    Haolun Zhang1, Mengna Yang1, Jie Wei2, Yufeng Nie2,*

    Digital Engineering and Digital Twin, Vol.2, pp. 49-77, 2024, DOI:10.32604/dedt.2023.044180

    Abstract This paper mainly considers the formulation and theoretical analysis of the reduced-order numerical method constructed by proper orthogonal decomposition (POD) for nonlocal diffusion problems with a finite range of nonlocal interactions. We first set up the classical finite element discretization for nonlocal diffusion equations and briefly explain the difference between nonlocal and partial differential equations (PDEs). Nonlocal models have to handle double integrals when using finite element methods (FEMs), which causes the generation of algebraic systems to be more challenging and time-consuming, and discrete systems have less sparsity than those for PDEs. So we establish… More >

  • Open Access

    ARTICLE

    Simulation of Underground Reservoir Stability of Pumped Storage Power Station Based on Fluid-Structure Coupling

    Peng Qiao1, Shuangshuang Lan1,*, Hongbiao Gu2, Zhengtan Mao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1381-1399, 2024, DOI:10.32604/cmes.2023.045662

    Abstract Based on global initiatives such as the clean energy transition and the development of renewable energy, the pumped storage power station has become a new and significant way of energy storage and regulation, and its construction environment is more complex than that of a traditional reservoir. In particular, the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress, which presents some challenges in achieving engineering safety and stability. Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability, in… More > Graphic Abstract

    Simulation of Underground Reservoir Stability of Pumped Storage Power Station Based on Fluid-Structure Coupling

  • Open Access

    ARTICLE

    Optimal Location and Sizing of Multi-Resource Distributed Generator Based on Multi-Objective Artificial Bee Colony Algorithm

    Qiangfei Cao1, Huilai Wang2, Zijia Hui1, Lingyun Chen2,*

    Energy Engineering, Vol.121, No.2, pp. 499-521, 2024, DOI:10.32604/ee.2023.042702

    Abstract Distribution generation (DG) technology based on a variety of renewable energy technologies has developed rapidly. A large number of multi-type DG are connected to the distribution network (DN), resulting in a decline in the stability of DN operation. It is urgent to find a method that can effectively connect multi-energy DG to DN. photovoltaic (PV), wind power generation (WPG), fuel cell (FC), and micro gas turbine (MGT) are considered in this paper. A multi-objective optimization model was established based on the life cycle cost (LCC) of DG, voltage quality, voltage fluctuation, system network loss, power… More >

  • Open Access

    PROCEEDINGS

    The Instability Mechanism of Moving Contact Line on the Surface of Soluble Solids

    Xudong Chen1,2, Quanzi Yuan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09318

    Abstract The wetting and instability of liquids on the surface of soluble solids is a problem of interface stability at multiple scales, which is coupled by mechanics and chemistry. This problem is crucial to application fields such as micro-nano processing and microscopic observation. In this work, the instability process of moving contact lines on the surfaces of soluble solids is investigated in experiments, theories, and simulations. Based on the unique shapes of the surfaces of soluble solids caused by instability in experiments, the concept of pagoda instability is proposed. Then the Cahn-Hilliard interfaces are developed to… More >

  • Open Access

    ARTICLE

    FLAME STABILITY OF PROPANE-AIR PREMIXED COMBUSTION IN HEAT-RECIRCULATION MICRO-COMBUSTORS

    Junjie Chen*, Wenya Song, Xuhui Gao, Longfei Yan, Deguang Xu

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.3

    Abstract The flame stability of single-pass heat-recirculation micro-combustors was investigated using computational fluid dynamics and compared to singlechannel micro-combustors with respect to critical heat loss coefficient and total power loss. The effect of wall thermal conductivity was also explored. The simulations show that heat recirculation profoundly affects blowout because of preheating of the cold incoming gases but has only minimal effect on extinction. In the limit of low-conductivity walls, the heat-recirculation micro-combustor is much more stable than the single-channel microcombustor. Under certain conditions, the heat recirculation micro-combustor can operate with room-temperature inlet and outlet streams and More >

Displaying 21-30 on page 3 of 369. Per Page