Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF STEADY FLOW OF VORTEX FLOWMETER

    Yan-Juan Zhaoa,*, Yu-Liang Zhangb,† , Chen-Liang Zhangb

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-7, 2021, DOI:10.5098/hmt.17.3

    Abstract Vortex flowmeter adopts advanced micro processing technology, which has the advantages of strong function, wide flow range, simple operation and maintenance, convenient installation and use. It is widely used in petroleum, chemical industry, electric power, metallurgy, urban gas supply and other industries to measure various gas flows. In order to study the characteristics of the inner flow passage of the vortex flowmeter and reach the normal working standard of the vortex flowmeter, this paper uses CFX to calculate the turbulent kinetic energy, eddy viscosity and flow velocity of the inner flow passage of the vortex… More >

  • Open Access

    ARTICLE

    A Study on the Unsteady Flow Characteristics and Energy Conversion in the Volute of a Pump-as-Turbine Device

    Senchun Miao1,2,*, Hongbiao Zhang1, Wanglong Tian1, Yinqiang Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1021-1036, 2021, DOI:10.32604/fdmp.2021.016925 - 08 September 2021

    Abstract To study the unsteady flow and related energy conversion process in the volute of a pump-as-turbine (PAT) device, six different working conditions have been considered. Through numerical calculation, the spatio-temporal variation of static pressure, dynamic pressure, total pressure and turbulent energy dissipation have been determined in each section of the volute. It is concluded that the reduction of the total power of two adjacent sections of the PAT volute is equal to the sum of the power lost by the fluid while moving from one section to the other and the power output from the More >

  • Open Access

    ARTICLE

    Influence of Tip Clearance on Unsteady Flow in Automobile Engine Pump

    Jiacheng Dai1, Jiegang Mou1, *, Tao Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 161-179, 2020, DOI:10.32604/fdmp.2020.06613 - 21 April 2020

    Abstract The automobile engine pump is an important part of the automobile cooling system, and has a direct influence on the engine performance. Based on the SST k-ω turbulence model, unsteady numerical simulation for an automobile engine pump with different tip clearances was carried out by Fluent. To study the flow field characteristics and pressure fluctuation, the characteristics of secondary flow distribution in volute are also analyzed. The result shows that the pressure fluctuation characteristics of the flow field show obvious periodic variation at different levels of tip clearances. The peak value of pressure fluctuation at… More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION ON NON-UNIFORM MESH OF DARCY-BRINKMAN-FORCHHEIMER MODEL FOR TRANSIENT CONVECTIVE HEAT TRANSFER OVER FLAT PLATE IN SATURATED POROUS MEDIUM

    Elyazid Flilihi, Mohammed Sriti, Driss Achemlal

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-10, 2019, DOI:10.5098/hmt.12.12

    Abstract A numerical investigation is performed to analyze the transient laminar free convection over an isothermal inclined plate embedded in a saturated porous medium with the viscous dissipation effects. The flow in the porous medium is modeled with the Darcy-Brinkman- Forchheimer model, taking into account the convective term. The dimensionless nonlinear partial differential equations are solved numerically using an explicit finite difference method. The effects of different parameters: (1 ≤ Re ≤ 10 ; 10−2 ≤ Da ≤ 10 ; 0 ≤ Gr ≤ 50 ; 0 ≤ F r ≤ 3 ; 0 ≤ Ec ≤ More >

  • Open Access

    ARTICLE

    Numerical Optimization Algorithm for Unsteady Flows of Rotor Based on Web Service

    Jilin Zhang1,4,5, Xuechao Liu1,5, Jian Wan2,1,5, Yongjian Ren1,5, Binglin Xu1,5, Jianfan He1,5, Yuchen Fan1,5, Li Zhou1,5, Zhenguo Wei6, Juncong Zhang6, Jue Wang3

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 527-546, 2019, DOI:10.31209/2019.100000109

    Abstract A numerical optimization algorithm for unsteady flows of rotor based on web service is proposed. Space discretization uses the finite volume method, time discretization uses the implicit dual-time steps method, and turbulence model uses the Spalart–Allmaras (S–A) model. In order to efficiently use the computing resources of the cluster, a service-oriented service computing architecture is used in a parallel computing service program. In order to realize the load balance of hybrid grid partition, the grid is partitioned by Metis Library. Meanwhile, data communication based on Message Passing Interface (MPI) technology guarantees the consistency of convergence More >

  • Open Access

    ARTICLE

    SORET AND RADIATION EFFECTS ON AN UNSTEADY FLOW OF A CASSON FLUID THROUGH POROUS VERTICAL CHANNEL WITH EXPANSION AND CONTRACTION

    N. Vijayaa,*, Y. Hari Krishnaa , K. Kalyanib, G.V.R. Reddya

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-11, 2018, DOI:10.5098/hmt.11.19

    Abstract The present paper deals with the thermo physical properties of a Casson fluid through an oscillating vertical wall embedded through porous medium under the influence transverse magnetic field, radiation, constant heat source and first order chemical reaction. The radiative heat loss is modelled by using Rosseland approximation. Similarity variables were used to convert the partial differential equations into ordinary differential equation. The transformed ordinary differential equations are solved numerically using Runge - Kutta -Fehlberg method with shooting technique. In order to get perfect perception of the flow pattern we obtain the graphs of axial velocity, More >

  • Open Access

    ARTICLE

    MATHEMATICAL STUDY OF NON-NEWTONIAN NANOFLUID TRANSPORT PHENOMENA FROM AN ISOTHERMAL SPHERE

    CH. Amanullaa,b , N. Nagendraa,1 , M. Surya Narayana Reddyb , A. Subba Raoa , O. Anwar Bégc

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-13, 2017, DOI:10.5098/hmt.8.29

    Abstract In this article, the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid from an isothermal sphere surface is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference More >

  • Open Access

    ARTICLE

    MHD UNSTEADY FLOW OF A WILLIAMSON NANOFLUID IN A VERTICAL POROUS SPACE WITH OSCILLATING WALL TEMPERATURE

    D. Lourdu Immaculatea , R. Muthurajb,*, Anant Kant Shuklac, S. Srinivasd

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-14, 2016, DOI:10.5098/hmt.7.12

    Abstract This article aims to examine the MHD unsteady flow of Williamson nanofluid in a vertical channel filled with a porous material and oscillating wall temperature. The modeling of this problem is transformed to ordinary differential equations by collecting the non-periodic and periodic terms and then series solutions are obtained by using a powerful method known as the homotopy analysis method (HAM). The influence of involved parameters on heat and mass transfer characteristics of the fluid flow is computed and presented graphically. Further, variations on volume flow rate, coefficient of skin friction, heat transfer rate and More >

  • Open Access

    ARTICLE

    UNSTEADY FLOW AND HEAT TRANSFER OF UCM FLUID IN A POROUS CHANNEL WITH VARIABLE THERMAL CONDUCTIVITY AND ION SLIP EFFECTS

    Odelu Ojjela*, K. Pravin Kashyap, N. Naresh Kuma, Samir Kumar Das

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-9, 2016, DOI:10.5098/hmt.7.32

    Abstract This article presents an unsteady incompressible Upper Convected Maxwell (UCM) fluid flow with temperature dependent thermal conductivity between parallel porous plates which are maintained at different temperatures varying periodically with time. Assume that there is a periodic suction and injection at the upper and lower plates respectively. The governing partial differential equations are reduced to non linear ordinary differential equations by using similarity transformations and the solution is obtained using differential transform method. The effects of various fluid and geometric parameters on the velocity components, temperature distribution and skin friction are discussed in detail through More >

  • Open Access

    ARTICLE

    EFFECT OF MAGNETIC FIELD ON INDIRECT NATURAL CONVECTION FLOW ABOVE A HORIZONTAL HOT FLAT PLATE

    Tapas Ray Mahapatraa, Sumanta Siduib, Samir Kumar Nandyc,*

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-15, 2014, DOI:10.5098/hmt.5.15

    Abstract The effect of variable transverse magnetic field on steady two-dimensional indirect natural convection flow of an incompressible viscous fluid over a horizontal hot flat plate is theoretically studied. The governing partial differential equations are transformed into ordinary ones by similarity transformation and solved numerically using fourth order Runge-Kutta method with shooting technique. The results are obtained for the skin friction coefficient and the local Nusselt number as well as the dimensionless velocities, temperature for some values of the magnetic parameter (M) subject to either prescribed (constant or variable) surface temperature or prescribed (variable) heat flux. More >

Displaying 11-20 on page 2 of 31. Per Page