Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,089)
  • Open Access

    ARTICLE

    Energy Analysis of the Aircraft Environment Control System Using Air with and without Humidity

    J. E. López-Gil1, J. F. Ituna-Yudonago1,*, V. Pérez-García2, V. Martínez-Calzada3, J. L. Rodríguez-Muñoz4, J. Serrano-Arellano5

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1365-1393, 2025, DOI:10.32604/fhmt.2025.068100 - 31 October 2025

    Abstract This paper presents a thermophysical study approach for a pure environmental control system (ECS), incorporating the geometric dimensions of heat exchangers, ram air duct, and air cycle machine (ACM) blades of the Sabreliner’s environmental control system. Real flight scenarios are simulated by considering flight input variables such as altitude, aircraft speed, compression ratio of the air cycle machine, and the mass flow rate of bleed air. The study evaluates the coefficient of performance (COP) of the environmental control system, the heat exchanger efficiencies, and the work distribution of the air cycle machine based on five… More >

  • Open Access

    ARTICLE

    Gas Dynamics and Heat Transfer of Stationary Gas Flows in the Intake System with Different Designs of the Engine Cylinder Head

    Leonid Plotnikov*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1443-1454, 2025, DOI:10.32604/fhmt.2025.068060 - 31 October 2025

    Abstract Industry and energy continue to require piston engines (PICE) at a high level worldwide. Therefore, science and technology must urgently work on improving the PICE working cycle. Improving the quality of the intake process of the working fluid into the cylinder is one of the most effective ways to improve the operational performance of PICE. The purpose of the study was to assess the impact of various cylinder head (CylH) designs on the gas-dynamic and heat-exchange qualities of air flows within an engine model’s intake system. Three different CylH designs were studied: the basic configuration… More >

  • Open Access

    ARTICLE

    Innovative Dual Two-Phase Cooling System for Thermal Management of Electric Vehicle Batteries Using Dielectric Fluids and Pulsating Heat Pipes

    Federico Sacchelli1, Luca Cattani1,2, Matteo Malavasi1, Fabio Bozzoli1,2,*, Corrado Sciancalepore1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1351-1364, 2025, DOI:10.32604/fhmt.2025.064154 - 31 October 2025

    Abstract This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles (EVs). The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes (PHPs), in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration. Experimental evaluations conducted under different discharge conditions demonstrate that the system effectively maintains battery temperatures within the optimal range of 20–40°C, with enhanced temperature uniformity and stability. While the PHP exhibited minimal impact at low power, its role More >

  • Open Access

    REVIEW

    Artificial Neural Networks and Taguchi Methods for Energy Systems Optimization: A Comprehensive Review

    Mir Majid Etghani1, Homayoun Boodaghi2,*

    Energy Engineering, Vol.122, No.11, pp. 4385-4474, 2025, DOI:10.32604/ee.2025.070668 - 27 October 2025

    Abstract Energy system optimization has become crucial for enhancing efficiency and environmental sustainability. This comprehensive review examines the synergistic application of Artificial Neural Networks (ANN) and Taguchi methods in optimizing diverse energy systems. While previous reviews have focused on these methods separately, this paper presents the first integrated analysis of both approaches across multiple energy applications. We systematically analyze their implementation in: Internal combustion engines, Thermal energy storage systems, Solar energy systems, Wind and tidal turbines, Heat exchangers, and hybrid energy systems. Our findings reveal that ANN models consistently achieve prediction accuracies exceeding 90% when compared More > Graphic Abstract

    Artificial Neural Networks and Taguchi Methods for Energy Systems Optimization: A Comprehensive Review

  • Open Access

    ARTICLE

    The Solar Power Efficiency to Control Hydro-Organics Intelligence Agriculture System in Greenhouse

    Eakbodin Gedkhaw, Nantinee Soodtoetong*

    Energy Engineering, Vol.122, No.11, pp. 4349-4363, 2025, DOI:10.32604/ee.2025.068577 - 27 October 2025

    Abstract This research aimed to study the efficiency of solar power system in controlling hydro-organic smart farming system in closed greenhouse by developing an off-grid system consisting of 450 W solar panel, MPPT charge controller, 500 W Pure Sine Wave inverter and 2150 Ah Deep Cycle batteries in series as 24 V system to supply power to automatic control devices, including temperature, humidity, pH sensor and water pump in NFT (Nutrient Film Technique) hydroponic system using organic nutrient solution. The test result between 08:00–17:00 or 30 days found that the system can produce a maximum of… More > Graphic Abstract

    The Solar Power Efficiency to Control Hydro-Organics Intelligence Agriculture System in Greenhouse

  • Open Access

    ARTICLE

    Peltier Water Cooling System with Solar Energy and IoT Technology Demonstration Set

    Prasongsuk Songsree*, Chaiyapon Thongchaisuratkrul*

    Energy Engineering, Vol.122, No.11, pp. 4541-4559, 2025, DOI:10.32604/ee.2025.068448 - 27 October 2025

    Abstract The purpose of this research is to design and develop a demonstration Set of a water cooling system using a Peltier with solar energy and technology, and IoT (Internet of Things), and test and measure the performance of the Peltier Plate Water Cooling System Demonstration Set under different environmental conditions. To be used as a model for clean energy systems and experimental learning materials. The prototype system consists of a 100-W solar panel, a 12 V 20 Ah battery, a Peltier plate, a DS18B20 sensor, and a NodeMCU microcontroller. The system performance is determined by… More >

  • Open Access

    ARTICLE

    Low-Carbon Economic Dispatch of Electric-Thermal-Hydrogen Integrated Energy System Based on Carbon Emission Flow Tracking and Step-Wise Carbon Price

    Yukun Yang*, Jun He, Wenfeng Chen, Zhi Li, Kun Chen

    Energy Engineering, Vol.122, No.11, pp. 4653-4678, 2025, DOI:10.32604/ee.2025.068199 - 27 October 2025

    Abstract To address the issues of unclear carbon responsibility attribution, insufficient renewable energy absorption, and simplistic carbon trading mechanisms in integrated energy systems, this paper proposes an electric-heat-hydrogen integrated energy system (EHH-IES) optimal scheduling model considering carbon emission stream (CES) and wind-solar accommodation. First, the CES theory is introduced to quantify the carbon emission intensity of each energy conversion device and transmission branch by defining carbon emission rate, branch carbon intensity, and node carbon potential, realizing accurate tracking of carbon flow in the process of multi-energy coupling. Second, a stepped carbon pricing mechanism is established to… More >

  • Open Access

    ARTICLE

    Low-Carbon Operation Optimization of Integrated Energy System Considering Multi-Equipment Coordination and Multi-Market Interaction

    Cheng Peng1,*, Hao Qi2

    Energy Engineering, Vol.122, No.11, pp. 4579-4602, 2025, DOI:10.32604/ee.2025.067704 - 27 October 2025

    Abstract Integrated energy systems (IES) are widely regarded as a key enabler of carbon neutrality, enabling the coordinated use of electricity, heat, and gas to support large-scale renewable integration. Yet their practical deployment still faces major challenges, including rigid thermoelectric coupling, insufficient operational flexibility, and fragmented carbon and certificate market mechanisms. To address these issues, this study proposes a low-carbon economic dispatch model for integrated energy systems (IES) that reduces emissions and costs while improving renewable energy utilization. A coordinated framework integrating carbon capture, utilization, and storage, two-stage power-to-gas, combined heat and power, and ground-source heat… More > Graphic Abstract

    Low-Carbon Operation Optimization of Integrated Energy System Considering Multi-Equipment Coordination and Multi-Market Interaction

  • Open Access

    ARTICLE

    Coordinated Scheduling of Electric-Hydrogen-Heat Trigeneration System for Low-Carbon Building Based on Improved Reinforcement Learning

    Jiayun Ding, Bin Chen*, Yutong Lei, Wei Zhang

    Energy Engineering, Vol.122, No.11, pp. 4561-4577, 2025, DOI:10.32604/ee.2025.067574 - 27 October 2025

    Abstract In the field of low-carbon building systems, the combination of renewable energy and hydrogen energy systems is gradually gaining prominence. However, the uncertainty of supply and demand and the multi-energy flow coupling characteristics of this system pose challenges for its optimized scheduling. In light of this, this study focuses on electro-thermal-hydrogen trigeneration systems, first modelling the system’s scheduling optimization problem as a Markov decision process, thereby transforming it into a sequential decision problem. Based on this, this paper proposes a reinforcement learning algorithm based on deep deterministic policy gradient improvement, aiming to minimize system operating… More >

  • Open Access

    ARTICLE

    Real-Time and Energy-Aware UAV Routing: A Scalable DAR Approach for Future 6G Systems

    Khadija Slimani1,2,*, Samira Khoulji2, Hamed Taherdoost3,4, Mohamed Larbi Kerkeb5

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4667-4686, 2025, DOI:10.32604/cmc.2025.070173 - 23 October 2025

    Abstract The integration of the dynamic adaptive routing (DAR) algorithm in unmanned aerial vehicle (UAV) networks offers a significant advancement in addressing the challenges posed by next-generation communication systems like 6G. DAR’s innovative framework incorporates real-time path adjustments, energy-aware routing, and predictive models, optimizing reliability, latency, and energy efficiency in UAV operations. This study demonstrated DAR’s superior performance in dynamic, large-scale environments, proving its adaptability and scalability for real-time applications. As 6G networks evolve, challenges such as bandwidth demands, global spectrum management, security vulnerabilities, and financial feasibility become prominent. DAR aligns with these demands by offering More >

Displaying 31-40 on page 4 of 3089. Per Page