Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access


    Structural Damage Identification System Suitable for Old Arch Bridge in Rural Regions: Random Forest Approach

    Yu Zhang, Zhihua Xiong*, Zhuoxi Liang, Jiachen She, Chicheng Ma

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 447-469, 2023, DOI:10.32604/cmes.2023.022699

    Abstract A huge number of old arch bridges located in rural regions are at the peak of maintenance. The health monitoring technology of the long-span bridge is hardly applicable to the small-span bridge, owing to the absence of technical resources and sufficient funds in rural regions. There is an urgent need for an economical, fast, and accurate damage identification solution. The authors proposed a damage identification system of an old arch bridge implemented with a machine learning algorithm, which took the vehicle-induced response as the excitation. A damage index was defined based on wavelet packet theory, and a machine learning sample… More >

  • Open Access


    Structural Damage Identification Using Ensemble Deep Convolutional Neural Network Models

    Mohammad Sadegh Barkhordari1, Danial Jahed Armaghani2,*, Panagiotis G. Asteris3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 835-855, 2023, DOI:10.32604/cmes.2022.020840

    Abstract The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visual methods, which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise. As a result, a robust, reliable, and repeatable method of damage identification is required. Ensemble learning algorithms for identifying structural damage are evaluated in this article, which use deep convolutional neural networks, including simple averaging, integrated stacking, separate stacking, and hybrid weighted averaging ensemble and differential evolution (WAE-DE) ensemble models. Damage identification is carried out on three types of damage. The proposed algorithms are… More >

  • Open Access


    Structural Damage Detection using Spatial Fourier Coefficients of Mode Shapes of Beams Simply Supported at Both Ends

    Gouravaraju Saipraneeth1, Ranjan Ganguli2

    Structural Durability & Health Monitoring, Vol.7, No.1&2, pp. 23-64, 2011, DOI:10.3970/sdhm.2011.007.023

    Abstract In this paper, the effect of damage on mode shape related parameters of a beam is investigated. The damage is represented by a localized reduction in beam stiffness. The damage location and amount is varied using a finite element model of the beam to obtain the mode shapes. A beam which is simply supported at both ends is used for the numerical results. The periodic nature of the beam is exploited to obtain spatial Fourier coefficients of the mode shapes. As the damage location and size are varied, it is found that the Fourier coefficients also change and are found… More >

  • Open Access


    Rotational Flexibility for Detecting Low Level Damage in Beam-Like Structures

    Saptarshi Sasmal1, K. Ramanjaneyulu2

    Structural Durability & Health Monitoring, Vol.7, No.4, pp. 253-282, 2011, DOI:10.3970/sdhm.2011.007.253

    Abstract This paper proposes a methodology for damage detection in beam like structures using vibration characteristics obtained from transfer matrix technique. At first, vibration characteristics of beam-like structure have been determined with the help of a computer program developed based on the formulations presented in this paper. Then, a detailed study has been carried out to categorise the influence of damage on frequency and mode shape (both displacement and rotational) information. For a structure with known magnitude and location of damage(s), frequencies and mode shape information are obtained and the same has been used in determining the damage in the structure.… More >

  • Open Access


    Development of a Portable Integrated Wireless Sensor Module for Structural Damage Monitoring

    Ramana M. Pidaparti1, Ashwin Belle2, Ju Wang3

    Structural Durability & Health Monitoring, Vol.5, No.4, pp. 295-310, 2009, DOI:10.3970/sdhm.2009.005.295

    Abstract This paper presents the development of a portable integrated wireless sensor module with video camera and ultrasound capabilities to monitor and investigate corrosion damage "in" structures. There are many studies in the literature on structural health monitoring with various sensors systems. However, very few of them utilize low power devices with reliable wireless communication capability to support data-intensive sensing which is a critical issue for practical applications. In this study, we developed a wireless sensor module with video camera capabilities and integrated it with a damage analysis module to investigate the damage of a structure. The module provides an open… More >

  • Open Access


    Studies on Methodological Developments in Structural Damage Identification

    V. Srinivas1, Saptarshi Sasmal1, K. Ramanjaneyulu2

    Structural Durability & Health Monitoring, Vol.5, No.2, pp. 133-160, 2009, DOI:10.3970/sdhm.2009.005.133

    Abstract Many advances have taken place in the area of structural damage detection and localization using several approaches. Availability of cost-effective computing memory and speed, improvement in sensor technology including remotely monitored sensors, advancements in the finite element method, adaptation of modal testing and development of non-linear system identification methods bring out immense technical advancements that have contributed to the advancement of modal-based damage detection methods. Advances in modal-based damage detection methods over the last 20-30 years have produced new techniques for examining vibration data for identification of structural damage. In this paper, studies carried out on damage identification methods using… More >

  • Open Access


    Time Series Analysis for Vibration-Based Structural Health Monitoring: A Review

    Kong Fah Tee 1,*

    Structural Durability & Health Monitoring, Vol.12, No.3, pp. 129-147, 2018, DOI: 10.3970/sdhm.2018.04316

    Abstract Structural health monitoring (SHM) is a vast, interdisciplinary research field whose literature spans several decades with focusing on condition assessment of different types of structures including aerospace, mechanical and civil structures. The need for quantitative global damage detection methods that can be applied to complex structures has led to vibration-based inspection. Statistical time series methods for SHM form an important and rapidly evolving category within the broader vibration-based methods. In the literature on the structural damage detection, many time series-based methods have been proposed. When a considered time series model approximates the vibration response of a structure and model coefficients… More >

  • Open Access


    Structural Damage Detection in Framed Structures using Under Foundation Settlement/ Rotation of Bases

    Siddesha H1, Manjunath N Hegde2

    Structural Durability & Health Monitoring, Vol.11, No.1, pp. 17-41, 2017, DOI:10.3970/sdhm.2017.012.017

    Abstract This paper describes the damage detection in framed structures due to the vertical support settlement and rotation of footing bases. The damage detection procedure proposed by Nobahari and Seyedpoor (2013) is used to detect the damage in the members of the frame. In the present study, instead of using the flexibility matrix (referred here as original flexibility matrix) method, the generalized flexibility matrix is used in the same algorithm and the results are compared. The algorithm uses flexibility matrix and strain energy concept to detect the damage in the members. The behaviour of the frame is discussed through changes observed… More >

  • Open Access


    Structural Damage Detection Using a Modified Artificial Bee Colony Algorithm

    H.J. Xu1, Z.H. Ding1, Z.R. Lu1,2, J.K. Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.4, pp. 335-355, 2016, DOI:10.3970/cmes.2016.111.335

    Abstract An optimization approach based on Artificial Bee Colony (ABC) algorithm is proposed for structural local damage detection in this study. The objective function for the damage identification problem is established by structural parameters and modal assurance criteria (MAC). The ABC algorithm is presented to solve the certain objective function. Then the Tournament Selection Strategy and chaotic search mechanism is adopted to enhance global search ability of the certain algorithm. A coupled double-beam system is studied as numerical example to illustrate the correctness and efficiency of the propose method. The simulation results show that the modified ABC algorithm can identify the… More >

  • Open Access


    A Universal Model-Independent Algorithm for Structural Damage Localization

    Q.W. Yang1,2, S.G. Du1, C.F. Liang1, L.J. Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.3, pp. 223-248, 2014, DOI:10.3970/cmes.2014.100.223

    Abstract Although the model-independent damage localization algorithms have been extensively developed in recent years, the theoretical relationship between these damage indicators and the definition of damage is not clear. Moreover the existing damage localization methods are usually dependent on the boundary conditions and the type of structure. In view of this, the paper presents a universal model-independent algorithm for structural damage localization. To this end, the explicit relationship between the damage and damage-induced displacement variation is firstly clarified by using the well-known Sherman-Morrison and Woodbury formulas. A theorem is then presented for structural damage localization. According to the theorem, the universal… More >

Displaying 1-10 on page 1 of 10. Per Page  

Share Link