Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    A New Approach for Structural Optimization with Application to Wind Turbine Tower

    Fugang Dong, Yuqiao Zheng*, Hao Li, Zhengwen He

    Energy Engineering, Vol.119, No.3, pp. 1017-1029, 2022, DOI:10.32604/ee.2022.020430

    Abstract This work takes the bionic bamboo tower (BBT) of 2 MW wind turbine as the target, and the non-dominated sorting genetic algorithm (NSGA-II) is utilized to optimize its structural parameters. Specifically, the objective functions are deformation and mass. Based on the correlation analysis, the target optimization parameters were determined. Furthermore, the Kriging model of the BBT was established through the Latin Hypercube Sampling Design (LHSD). Finally, the BBT structure is optimized with multiple objectives under the constraints of strength, natural frequency, and size. The comparison shows that the optimized BBT has an advantage in the Design Load Case (DLC). This… More >

  • Open Access

    ARTICLE

    Topology Optimization with Aperiodic Load Fatigue Constraints Based on Bidirectional Evolutionary Structural Optimization

    Yongxin Li1, Guoyun Zhou1, Tao Chang1,*, Liming Yang2, Fenghe Wu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 499-511, 2022, DOI:10.32604/cmes.2022.017630

    Abstract Because of descriptive nonlinearity and computational inefficiency, topology optimization with fatigue life under aperiodic loads has developed slowly. A fatigue constraint topology optimization method based on bidirectional evolutionary structural optimization (BESO) under an aperiodic load is proposed in this paper. In view of the severe nonlinearity of fatigue damage with respect to design variables, effective stress cycles are extracted through transient dynamic analysis. Based on the Miner cumulative damage theory and life requirements, a fatigue constraint is first quantified and then transformed into a stress problem. Then, a normalized termination criterion is proposed by approximate maximum stress measured by global… More >

  • Open Access

    ARTICLE

    Stress Relaxation and Sensitivity Weight for Bi-Directional Evolutionary Structural Optimization to Improve the Computational Efficiency and Stabilization on Stress-Based Topology Optimization

    Chao Ma, Yunkai Gao*, Yuexing Duan, Zhe Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 715-738, 2021, DOI:10.32604/cmes.2021.011187

    Abstract Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs. To solve the inherent issues of stress-based topology optimization, many schemes are added to the conventional bi-directional evolutionary structural optimization (BESO) method in the previous studies. However, these schemes degrade the generality of BESO and increase the computational cost. This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method. A global stress measure constructed by p-norm function is treated as the objective function. To… More >

  • Open Access

    EDITORIAL

    Introduction to the Special Issue on Recent Developments of Isogeometric Analysis and Its Applications in Structural Optimization

    Yingjun Wang1,*, Zhenpei Wang2, Xiaowei Deng3, David J. Benson4, Damiano Pasini5, Shuting Wang6

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.3, pp. 783-785, 2020, DOI:10.32604/cmes.2020.013234

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Parametric Structural Optimization of 2D Complex Shape Based on Isogeometric Analysis

    Long Chen1, Li Xu1, Kai Wang1, Baotong Li2,*, Jun Hong2

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.1, pp. 203-225, 2020, DOI:10.32604/cmes.2020.09896

    Abstract The geometric model and the analysis model can be unified together through the isogeometric analysis method, which has potential to achieve seamless integration of CAD and CAE. Parametric design is a mainstream and successful method in CAD field. This method is not continued in simulation and optimization stage because of the model conversion in conventional optimization method based on the finite element analysis. So integration of the parametric modeling and the structural optimization by using isogeometric analysis is a natural and interesting issue. This paper proposed a method to realize a structural optimization of parametric complex shapes by using isogeometric… More >

  • Open Access

    REVIEW

    Structural Design Optimization Using Isogeometric Analysis: A Comprehensive Review

    Yingjun Wang1,*, Zhenpei Wang2,*, Zhaohui Xia3, Leong Hien Poh2

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 455-507, 2018, DOI:10.31614/cmes.2018.04603

    Abstract Isogeometric analysis (IGA), an approach that integrates CAE into conventional CAD design tools, has been used in structural optimization for 10 years, with plenty of excellent research results. This paper provides a comprehensive review on isogeometric shape and topology optimization, with a brief coverage of size optimization. For isogeometric shape optimization, attention is focused on the parametrization methods, mesh updating schemes and shape sensitivity analyses. Some interesting observations, e.g. the popularity of using direct (differential) method for shape sensitivity analysis and the possibility of developing a large scale, seamlessly integrated analysis-design platform, are discussed in the framework of isogeometric shape… More >

  • Open Access

    ABSTRACT

    Structural optimization of the manned pressure hull of a deep manned submersible based on a new safety standard

    Binbin Pan, Weicheng Cui

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.17, No.3, pp. 81-82, 2011, DOI:10.3970/icces.2011.017.081

    Abstract The most critical component of a deep manned submersible is the manned pressure hull. It provides not only a safe living space for pilots and scientists but also provides a proper working condition for non-pressure-resisting and non-water-repellent equipments. At the same time, the weight of the pressure hull occupies a large part of the total weight of the deep manned submersible. So the pressure hull should be designed to have enough strength, water-tightness and as light as possible. As the most commonly used pressure hull type, spherical pressure hull has been used in all the existing deep manned submersibles such… More >

  • Open Access

    ARTICLE

    An Enhanced Formulation of the Maximum Entropy Method for Structural Optimization

    S. Hernández1,2, A. Baldomir1, J. Díaz1, F. Pereira1

    CMC-Computers, Materials & Continua, Vol.32, No.3, pp. 219-240, 2012, DOI:10.3970/cmc.2012.032.219

    Abstract A numerical optimization method was proposed time ago by Templeman based on the maximum entropy principle. That approach combined the Kuhn-Tucker condition and the information theory postulates to create a probabilistic formulation of the optimality criteria techniques. Such approach has been enhanced in this research organizing the mathematical process in a single optimization loop and linearizing the constraints. It turns out that such procedure transforms the optimization process in a sequence of systems of linear equations which is a very efficient way of obtaining the optimum solution of the problem. Some examples of structural optimization, namely, a planar truss, a… More >

  • Open Access

    ARTICLE

    Optimal Plastic Synthesis of Structures with Unilateral Supports Involving Frictional Contact

    S. Tangaramvong, F. Tin-Loi

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.3, pp. 269-296, 2009, DOI:10.3970/cmes.2009.049.269

    Abstract We consider the optimal synthesis, namely minimum weight design, of rigid perfectly-plastic structures for which some supports involve unilateral frictional contact. This problem is of interest as it is not only encountered in practice but it also involves, in the general friction case, a nonassociative complementarity condition that makes it theoretically and numerically challenging. For simplicity of exposition, we focus on the class of bar structures for which yielding is governed by either pure bending or by combined axial and flexural forces. In view of possible multiplicity of solutions due to nonassociativity, a direct optimization formulation may lead to an… More >

  • Open Access

    ARTICLE

    Weight Optimization of Skeletal Structures with Multi-Point Simulated Annealing

    L. Lamberti1,2, C. Pappalettere1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.3, pp. 183-222, 2007, DOI:10.3970/cmes.2007.018.183

    Abstract This paper presents a novel optimization algorithm for minimizing weight of skeletal structures. The algorithm--denoted as MPISA (Multi Point Improved Simulated Annealing)--utilizes a multi-level simulated annealing scheme where different candidate designs are compared simultaneously. This is done in purpose to increase computational efficiency and to minimize the number of exact structural analyses.
    MPISA is tested in three complicated design problems of skeletal structures: (i) sizing optimization of a planar bar truss under five independent loading conditions including 200 design variables; (ii) sizing-configuration optimization of a cantilevered bar truss including 81 design variables; (iii) sizing-configuration optimization of a frame structure… More >

Displaying 11-20 on page 2 of 21. Per Page