Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (39)
  • Open Access

    ARTICLE

    Formation of Highly Oriented Cellulose Nanocrystal Films by Spin Coating Film from Aqueous Suspensions

    Mingzhe Jiang1, S. Nicole DeMass1, D. Ross Economy2, Thomas Shackleton1, Christopher L. Kitchens1*

    Journal of Renewable Materials, Vol.4, No.5, pp. 377-387, 2016, DOI:10.7569/JRM.2016.634131

    Abstract Spin coating was used to cast a uniform film of cellulose nanocrystals with low surface roughness and variable thickness as a function of operational parameters that include rotational speed and dispense suspension concentration. The film thickness was controllable from 40 nm up to 1 μm with surface roughness an order of magnitude less than blade-coating methods. The degree of radial orientation was qualitatively assessed and shown to be variable with processing parameters. Under specific processing conditions, the formation of striation patterns was observed and associated with film drying instability. The striation patterns are periodic in… More >

  • Open Access

    ARTICLE

    A Multiscale Method Based on the Fibre Configuration Field, IRBF and DAVSS for the Simulation of Fibre Suspension Flows

    H.Q. Nguyen1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.4, pp. 361-403, 2015, DOI:10.3970/cmes.2015.109.361

    Abstract In this paper, an Integrated Radial Basis Function (IRBF)-based multiscale method is used to simulate the rheological properties of dilute fibre suspensions. For the approach, a fusion of the IRBF computation scheme, the Discrete Adaptive Viscoelastic Stress Splitting (DAVSS) technique and the Fibre Configuration Field has been developed to investigate the evolution of the flow and the fibre configurations through two separate computational processes. Indeed, the flow conservation equations, which are expressed in vorticity-stream function formulation, are solved using IRBF-based numerical schemes while the evolution of fibre configuration fields governed by the Jeffery’s equation is… More >

  • Open Access

    ARTICLE

    Interval Uncertain Optimization of Vehicle Suspension for Ride Comfort

    C. Jiang1,2, S. Yu1, H.C. Xie1, B.C. Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.4, pp. 443-467, 2014, DOI:10.3970/cmes.2014.098.443

    Abstract Based on the interval analysis method, this paper proposes an uncertain optimization model for the ride comfort in vehicles and achieves the optimal design of vehicle ride comfort under the condition of complicated uncertainty. The spring stiffness and shock absorber damping of suspension is regarded as the design parameters, while the root mean square (RMS) of the vehicle body acceleration is treated as the design objective and the corresponding constraints are composed of suspension stiffness, natural frequency and RMS of suspension dynamic deflection. Moreover, the uncertainties of key parameters, such as sprung mass, tire stiffness, More >

  • Open Access

    ARTICLE

    Protective effect of aqueous suspension of dried latex of Calotropis procera against oxidative stress and renal damage in diabetic rats

    VIJAY L. KUMAR* AND BISWA M. PADHY

    BIOCELL, Vol.35, No.3, pp. 63-70, 2011, DOI:10.32604/biocell.2011.35.063

    Abstract Calotropis species have been used in the traditional medicinal system for the treatment of diseases of the liver and abdomen. In view of the antioxidant and anti-hyperglycemic properties of an aqueous suspension obtained from the dried latex of Calotropis procera, the present study was carried out to evaluate its efficacy in affording protection against alloxan induced changes in rat kidney. A single intraperitoneal injection of alloxan (150 mg/kg) in rats produced hyperglycemia within 3 days and altered kidney functions over a period of 90 days. Daily oral administration of the aqueous suspension (100 and 400 mg/kg) in… More >

  • Open Access

    ARTICLE

    Flow-Induced Forces in Agglomerates

    J.J. Derksen1, D. Eskin2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.4, pp. 341-356, 2011, DOI:10.3970/fdmp.2011.007.341

    Abstract Direct simulations of laminar solid-liquid flow in micro-channels with full resolution of the solid-liquid interfaces have been performed. The solids phase consists of simple agglomerates, assembled of monosized, spherical particles. The flow of the interstitial liquid is solved with the lattice-Boltzmann method. Solids and fluid dynamics are two-way coupled. The simulations keep track of the flow-induced forces in the agglomerates. The effects of agglomerate type (doublets, triplets, and quadruplets), solids loading, and channel geometry on (the statistics of the) flow and collision-induced forces have been investigated. By comparing these forces with agglomerate strength, we would More >

  • Open Access

    ARTICLE

    Taxus globosa S. cell lines: Initiation, selection and characterization in terms of growth, and of baccatin III and paclitaxel production

    DULCE MA. BARRADAS-DERMITZ1,*, PATRICIA M. HAYWARD-JONES2, MARTÍN MATA-ROSAS3, BEATRIZ PALMEROSSÁNCHEZ2, OSCAR B. J. PLATAS-BARRADAS4, RODOLFO F. VELÁSQUEZ-TOLEDO2

    BIOCELL, Vol.34, No.1, pp. 1-6, 2010, DOI:10.32604/biocell.2010.34.001

    Abstract Of the initial six cell lines originating from explants of Taxus globosa, or Mexican yew (stem internode, leaves and meristematic tissue), three were selected for their microbial and oxidation resistance, two from leaves and the other from stem internode. A study of their behavior, both in terms of cell growth, and of baccatin III and paclitaxel production, was developed in suspension cultures with an initially standardized biomass (fresh weight 0.23 g/L) using modified Gamborg’s B5 medium, and an elicitor (methyl jasmonate), on either the first or seventh day of culture, at several levels (0, 0.1, 1, More >

  • Open Access

    ARTICLE

    Towards an Analysis of Shear Suspension Flows Using Radial Basis Functions

    K. Le-Cao1, N. Mai-Duy1, C.-D. Tran1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.67, No.3, pp. 265-294, 2010, DOI:10.3970/cmes.2010.067.265

    Abstract In this paper, radial basis functions are utilised for numerical prediction of the bulk properties of particulate suspensions under simple shear conditions. The suspending fluid is Newtonian and the suspended particles are rigid. Results obtained are compared well with those based on finite elements in the literature. More >

  • Open Access

    ABSTRACT

    A Hybrid Damper and Its Application for Semi-Active Control of Vehicle Suspension System

    Y.W. Yun, M.K. Park

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.1, pp. 25-26, 2009, DOI:10.3970/icces.2009.009.025

    Abstract This paper presents a semi-active control of vehicle suspension system with a hybrid damper. This damper consists of a conventional oil damper and magnetorheological fluidic (MRF) accumulator, which comprises gas accumulator and MRF device. The shaft of MRF device, fitted to in series the side of gas accumulator, is connected with a floating piston that divided into gas chamber and oil chamber. During the oil damper piston motion, the floating piston also behaves in the same direction of piston and the pressure of gas chamber varies. MRF accumulator will provides a force to the damper… More >

  • Open Access

    ARTICLE

    Block Stratification of Sedimenting Granular Matter in a Vessel due to Vertical Vibrations

    V.G. Kozlov1,2, A.A. Ivanova3, P. Evesque1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.3, pp. 203-210, 2006, DOI:10.3970/fdmp.2006.002.203

    Abstract Sedimentation of granular matter in a vertical channel filled with a viscous liquid and subject to longitudinal translational vibration is studied, starting froma compact suspension. A new vibrational effect is foundexperimentally and described theoretically; it is the formation of blocks (with a relatively high density) of sedimenting granular matter with stable lower and upper horizontal demarcations and a sharp density discontinuity. Owing to this phenomenon the sedimentation velocity of such granular matter is reduced. A new theoreticalmodel based on viscous vibrational particle interactionin the limit of concentrated suspensions is elaborated, assuming particle-particle attraction in direction More >

Displaying 31-40 on page 4 of 39. Per Page