Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access

    ARTICLE

    THE EFFECTS OF NUSSELT, REYNOLDS NUMBER, AND PRESSURE DROP ON THE THERMAL PERFORMANCE OF PIERCED PIN FINS

    Wadhah Hussein Al doori*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-9, 2022, DOI:10.5098/hmt.19.8

    Abstract Perforated fin forced convection heat transfer is the primary focus of this investigation. The purpose of this research is to see if perforated pin fins can help with heat transmission in the devices. Each pin's perforation diameter and number of holes are rigorously examined. The Nusselt numbers for perforated pins are 47 percent higher than those for solid pins, according to the study, and this number raises as the number of holes increases. The pressure drop is reduced by 19% when perforated pins are used instead of solid pins. Heat transmission in a round-holed pin fin was studied using forced… More >

  • Open Access

    ARTICLE

    ANALYTICAL STUDY OF THERMAL PERFORMANCE OF A JET PLATE SOLAR AIR HEATER WITH THE LONGITUDINAL FINS UNDER THE CROSS FLOW AND NON-CROSS FLOW CONDITIONS

    Rajen Kumar Nayaka,* , Ravi Shankar Prasada,† , Ujjwal Kumar Nayaka, Amit Kumar Guptab

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-12, 2022, DOI:10.5098/hmt.19.7

    Abstract This analytical study has been carried out on inline and staggered hole jet plate solar air heater with longitudinal fins attached underside the absorber surface under the cross flow and non-cross flow conditions of air through the channels for varying mass flow rate of air, ṁ1 (50-300 kg/hm2 ), jet hole diameter, D (6 mm-10 mm) and distance between the absorber and jet plate, Z2 (5 cm-10 cm) with fixed number of jet holes, N (480 and 1008 for inline and staggered hole respectively) and pitch of the fins, p (3 mm). The result shows the performance of staggered hole… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF THE THERMAL PERFORMANCE OF CORRUGATED HELICALLY COILED TUBE-IN-TUBE HEAT EXCHANGER

    Hussein Al-Gburi*, Akeel Abbas Mohammed, Audai Hussein Al-Abbas

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-7, 2023, DOI:10.5098/hmt.20.17

    Abstract Transferring thermal energy efficiently necessitates utilizing a heat exchanger capable of producing the full thermal power of the energy supply at lowest possible cost and time. Therefore, in the present investigation, the impact of corrugated helical coil concentric tube-in-tube heat exchanger on the thermal performance is investigated experimentally. As a continuous in our issue of heat exchanger, the corrugated helical tube-in-tube is carried out and compared with smooth helical tube-in-tube for free convection heat transfer. The set-up of the experimental apparatus are designed and utilized to be appropriate for the cooling and heating systems of working fluid. The impacts of… More >

  • Open Access

    ARTICLE

    The Impact of Sun Radiation on the Thermal Comfort in Highly Glazed Buildings Equipped with Floor Heating Systems

    Abdelatif Merabtine1,*, Abdelhamid Kheiri2, Salim Mokraoui3, Lyes Bellagh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 941-951, 2023, DOI:10.32604/fdmp.2023.022029

    Abstract Occupants of highly glazed buildings often suffer from thermal discomfort during the mid-seasons when no shadings are used in such buildings, especially when inertial heating systems are used. The present study is devoted to evaluating the impact of long solar beam exposure on the internal thermal discomfort in glazed spaces when heating is implemented through a floor system. A comprehensive experimental study is carried out using an experimental bi-climatic chamber which is fully monitored and controlled, allowing realistic simulations of the dynamic movement of the sun patch on a heated slab. The findings show that a period of discomfort as… More >

  • Open Access

    ARTICLE

    Reducing the Environmental Impact of Construction by Using Renewable Materials

    Mike Lawrence

    Journal of Renewable Materials, Vol.3, No.3, pp. 163-174, 2015, DOI:10.7569/JRM.2015.634105

    Abstract The relative importance of embodied energy and operational energy on the environmental impact of construction are examined in this article. It highlights the fact that the targets set by the Kyoto Protocol are primarily being met by the reduction of in-use energy, and that the implications of that are that the energy embodied in buildings will increase in signifi cance from its current 17% level to 50% by 2050. The article describes how the use of bio-based renewable materials can make a signifi cant contribution to reducing not only the embodied energy of buildings by using the sequestration of CO2… More >

  • Open Access

    ARTICLE

    Analysis of the Thermal Performance of External Insulation in Prefabricated Buildings Using Computational Fluid Dynamics

    Ang Wang1,*, Hui Wang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1293-1306, 2022, DOI:10.32604/fdmp.2022.018561

    Abstract This paper investigates the thermal performance of prefabricated exterior walls using the Computational Fluid Dynamics method to reduce energy consumption. The thermal performance of the prefabricated exterior wall was numerically simulated using the software ANSYS Fluent. The composite wall containing the cavity is taken as the research object in this paper after analysis. The simulation suggests that when the cavity thickness is 20 mm and 30 mm, the heat transfer coefficient of the air-sandwich wall is 1.3 and 1.29, respectively. Therefore, the optimal width of the cavity is 20 mm, and the most suitable material is the aerated concrete block.… More >

  • Open Access

    ARTICLE

    Simulation of the Hygrothermal Behavior of a Building Envelope Based on Phase Change Materials and a Bio-Based Concrete

    Dongxia Wu1, Mourad Rahim1, Wendong Li1, Mohammed El Ganaoui1,*, Rachid Bennacer2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1483-1494, 2022, DOI:10.32604/fdmp.2022.021917

    Abstract Phase Change Materials (PCMs) have high thermal inertia, and hemp concrete (HC), a bio-based concrete, has strong hygroscopic behavior. In previous studies, PCM has been extensively combined with many materials, however, most of these studies focused on thermal properties while neglecting hygroscopic aspects. In this study, the two materials have been combined into a building envelope and the related hygrothermal properties have been studied. In particular, numerical studies have been performed to investigate the temperature and relative humidity behavior inside the HC, and the effect of adding PCM on the hygrothermal behavior of the HC. The results show that there… More >

  • Open Access

    ARTICLE

    Numerical Study on Heat Transfer Characteristic of the Plate-Fin Microchannel Heat Sink for Water-Based Thermal Management of CPU Chip

    Jie-Chao Chen, Rui-Hao Luo, Wu-Zhi Yuan, Nan-Long Hong*, Wen-Hao Wang

    Energy Engineering, Vol.119, No.4, pp. 1327-1339, 2022, DOI:10.32604/ee.2022.019331

    Abstract For effective water-based thermal management of high heat generating CPU chip, a series of numerical simulation has been conducted to study the effects of heat flux, fin height and flow rate on convective thermal performance of the plate-fin microchannel heat sinks. The characteristics of heat transfer and flow resistance have been quantificationally discussed and JF factor is employed to evaluate the comprehensive efficiency of convective heat transfer of microchannel heat sink. Results show that the increase in fin height and flow rate of cooling water is helpful to decrease the maximum temperature of CPU chip. Large flow rate and heat… More >

  • Open Access

    ARTICLE

    Study on the Thermal Performances of a New Type of Fabricated Thermally Insulating Decorative Wall Material

    Changlin Wang1,2,*, Yu Tang2, Xiao Shen3, Wenjing Sun2, Guanyong Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 919-932, 2022, DOI:10.32604/fdmp.2022.019036

    Abstract This study proposes three possible keel-surface layer combinations to implement a new type of thermally insulating decorative wall system. A set of 8 samples has been studied. In particular, through theoretical calculations, simulations, and experimental verification, the influence of different types of connecting structures on the overall thermal performance of the wall system has been determined. It has been found that a proper combination of these elements can meet existing energy-saving standards and effectively reduce the energy loss caused by thermal bridges due to the installation of steel keels at the edges of integrated wall panels. More >

  • Open Access

    ARTICLE

    The Effect of a Liquid Cover on the Thermal Performance of a Salinity Gradient Solar Pond: An Experimental Study

    Asaad H. Sayer1, Mohsin E. Al-Dokheily1, Hameed B. Mahood2,*, Haider M. Khadem1, Alasdair N. Campbell3

    Energy Engineering, Vol.119, No.1, pp. 17-34, 2022, DOI:10.32604/EE.2022.017715

    Abstract Salinity Gradient Solar Ponds (SGSPs) offer the potential to capture and store solar energy for use in a range of domestic and industrial activities in regions with high solar insolation. However, the evaporation of water from these ponds is a significant problem that must be overcome for them to be deployed successfully. Thus, two ponds were constructed in the city of Nasiriya, Iraq. The two ponds were cylindrical with a diameter of 1.4 m and a total depth of 1.4 m. The water body in the two ponds was constructed with layer depths of 0.5, 0.75 and 0.1 m for… More >

Displaying 31-40 on page 4 of 57. Per Page