Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (63)
  • Open Access

    ARTICLE

    SECOND LAW ANALYSIS ON RADIATIVE SLIP FLOW OF NANOFLUID OVER A STRETCHING SHEET IN THE PRESENCE OF LORENTZ FORCE AND HEAT GENERATION/ABSORPTION

    M. Govindarajua , B. Gangab , A.K. Abdul Hakeema,*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.10

    Abstract In this article, we analyzed the second law of thermodynamics applied to an electrically conducting incompressible water based nanofluid flow over a stretching sheet in the presence of thermal radiation and uniform heat generation/absorption both analytically and numerically. The basic boundary layer equations are non-linear PDEs which are converted into non-linear ODEs using scaling transformation. The dimensionless governing equations for this investigation are solved analytically using hypergeometric function and numerically by the fourth order Runge Kutta method with shooting iteration technique. The effects of partial slip parameter with the nanoparticle volume fraction, magnetic parameter, radiation parameter, uniform heat generation/absorption parameter,… More >

  • Open Access

    ARTICLE

    AN EXACT SOLUTION ON UNSTEADY MHD VISCOELASTIC FLUID FLOW PAST AN INFINITE VERTICAL PLATE IN THE PRESENCE OF THERMAL RADIATION

    E. Kumaresan, A .G. Vijaya Kumar*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.9

    Abstract A study has been carried out to analyse an unsteady free convective chemically reacting, MHD Visco-elastic fluid (Walter’s liquid-B model) flow past an infinite vertical plate in the presence of thermal radiation with uniform temperature and species diffusion. The dimensionless governing partial differential equations are solved by using Laplace transform technique. The effects of different physical parameters like visco-elastic parameter, chemical reaction parameter, Magnetic field parameter, thermal Grashof number, mass Grashof number and time are discussed by plotting the velocity profiles for both cooling  (Gr >0, Gm > 0) and heating of the plate (Gr < 0, Gm <… More >

  • Open Access

    ARTICLE

    SORET AND DUFOUR EFFECTS ON MHD RADIATIVE HEAT AND MASS TRANSFER FLOW OF A JEFFREY FLUID OVER A STRETCHING SHEET

    D. Harish Babua , B. Venkateswarlub , P.V. Satya Narayanac,*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.5

    Abstract This paper studies the combined effects of Soret (thermal-diffusion) and Dufour (diffusion-thermo) on magnetohydrodynamics (MHD) boundary layer flow of a Jeffrey fluid past a stretching surface with chemical reaction and heat source. Using the similarity transformations, the governing equations are transformed into a set of non-linear ordinary differential equations (ODE’s). The resulting equations are then solved numerically by using the shooting method along with Runge-Kutta fourth order integration scheme. Numerical results for the velocity, temperature and concentration distributions as well as the skin-friction coefficient, Nusselt number and Sherwood number are discussed in detail and displayed graphically for various physical parameters.… More >

  • Open Access

    ARTICLE

    SCALING GROUP TRANSFORMATION FOR MIXED CONVECTION IN A POWER-LAW FLUID SATURATED POROUS MEDIUM WITH EFFECTS OF SORET, RADIATION AND VARIABLE PROPERTIES

    J. Pranithaa,* , G. Venkata Sumana , D. Srinivasacharyaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.39

    Abstract An analysis is performed to investigate the influence of radiation, thermal-diffusion and variable properties on mixed convection flow, heat and mass transfer from a vertical plate in a porous medium saturated with a power-law fluid. The non-linear partial differential equations are reduced to ordinary differential equations by implementing Lie scaling group transformations. These ordinary differential equations are solved numerically by implementing a shooting technique. The numerical results for dimensionless velocity, temperature and concentration profiles for pseudo-plastic, Newtonian and dilatant fluids are presented graphically for different values of variable viscosity, variable thermal conductivity, Soret and radiation parameters. Heat and mass transfer… More >

  • Open Access

    ARTICLE

    FLOW OVER AN EXPONENTIALLY STRETCHING SHEET WITH HALL, THERMAL RADIATION AND CHEMICAL REACTION EFFECTS

    D. Srinivasacharya* , P. Jagadeeshwar

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.37

    Abstract Numerical solutions for the boundary layer flow, heat and mass transfer of a viscous incompressible fluid over an exponentially stretching sheet is developed. The effect of Hall current, chemical reaction and thermal radiation are taken into account. Through similarity transformations, the governing boundary layer equations are reduced to a set of coupled non-linear ordinary differential equations and then linearized using the successive linearization method. The resultant linear system is solved using the Chebyshev pseudo spectral method. The numerical results for velocity, temperature and concentration are shown graphically. The skin-frictions are calculated and variations with pertinent parameters are presented in tabular… More >

  • Open Access

    ARTICLE

    IMPACT OF THERMAL RADIATION ON DOUBLE-DIFFUSIVE CONVECTION FLOW OF CASSON FLUID OVER A STRETCHING VERTICAL SURFACE

    K. Ganesh Kumar1 , G.K. Ramesh2,*, B.J. Gireesha1

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.32

    Abstract The present article addresses the double-diffusive convection flow of the Casson fluid with thermal radiation. With suitable independent transformations, the governing partial differential equations are first transformed into ordinary differential equations. The converted equations are solved numerically by using Runge-Kutta-Fehlberg forth-fifth technique (RKF45 Method) via shooting technique. The eects of the emerging parameters, the skin friction coecient, the Nusselt number, and the Sherwood number are analyzed on the dimensionless velocities, temperature, and concentration fields. Outcome shows that buoyancy forces due to temperature difference suppress the skin friction whereas it will enhance the local Nusselt and Sherwood numbers. More >

  • Open Access

    ARTICLE

    MHD MAXWELL FLUID FLOW IN PRESENCE OF NANO-PARTICLE THROUGH A VERTICAL POROUS-PLATE WITH HEAT-GENERATION, RADIATION ABSORPTION AND CHEMICAL REACTION

    S. M. Arifuzzamana , M. S. Khanb,*, M. S. Islamc , M. M. Islamc , B. M. J. Ranaa , P. Biswasa, S. F. Ahmmeda

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-14, 2017, DOI:10.5098/hmt.9.25

    Abstract Present study concerns with the numerical investigation of MHD transient naturally convective and higher order chemically reactive Maxwell fluid with Nano-particle flow through a vertical porous plate with the effects of heat generation and radiation absorption. A boundary layer approximation is carried out to develop a flow model representing time dependent momentum, energy, and concentration equations. The governing model equations in partial differential equations (PDEs) form are transformed into a set of nonlinear ordinary differential equation (ODEs) by using non-similar technique. Explicit Finite Difference Method (EFDM) is employed by implementing an algorithm in Compaq Visual Fortran 6.6a to solve the… More >

  • Open Access

    ARTICLE

    VARIABLE HEAT SOURCE AND WALL RADIATION EFFECTS ON BOUNDARY LAYER CONVECTION FROM AN INCLINED PLATE IN NON-DARCIAN POROUS MEDIUM

    Elyazid Flilihia,† , Mohammed Sritia , Driss Achemlalb , Mohamed El harouia

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.23

    Abstract A semi - analytical investigation is performed to analyze the thermal convection flow with a radiation flux and a variable internal heat generation along an inclined plate embedded in a saturated porous medium. The flow in the porous medium is modeled with the Darcy-Brinkman law taking into account the convective term, while the temperature field is obtained from the energy equation. These governing equations with the boundary conditions are first cast into a dimensionless form by using a unique similarity transformation and the resulting coupled differential equations are then solved numerically by a computational program based on the fifth order… More >

  • Open Access

    ARTICLE

    A COMPARATIVE STUDY OF THERMAL RADIATION EFFECTS ON MHD FLOW OF NANOFLUIDS AND HEAT TRANSFER OVER A STRETCHING SHEET

    T. Sravan Kumar, B. Rushi Kumar*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.13

    Abstract In this work, the steady natural convective boundary layer flow of nanofluid and heat transfer over a stretching sheet in the presence of a uniform transverse magnetic field is investigated. We consider two different base fluids and three different nanoparticles were examined as nanofluid. A new model was used in the simulation of nanofluid. Similarity transformations are used to obtain a system of nonlinear ordinary differential equations. The resulting equations are solved numerically by shooting method with Runge-Kutta fourth order scheme (MATLAB package). The effects of various parameters describing the transport in the presence of thermal radiation, buoyancy parameter, magnetic… More >

  • Open Access

    ARTICLE

    WILLIAMSON FLUID FLOW BEHAVIOUR OF MHD CONVECTIVERADIATIVE CATTANEO–CHRISTOV HEAT FLUX TYPE OVER A LINEARLY STRETCHED-SURFACE WITH HEAT GENERATION AND THERMAL-DIFFUSION

    Md. Shakhaoath Khana,*, Md. Mizanur Rahmana,b, S.M. Arifuzzamanc , Pronab Biswasc , Ifsana Karima

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-11, 2017, DOI:10.5098/hmt.9.15

    Abstract A two-dimensional (2D) flow of an incompressible Williamson fluid of Cattaneo–Christov heat flux type over a linearly stretched surface with the influence of magnetic field, thermal radiation-diffusion, heat generation and viscous dissipation is carried out in the present study. To develop a Williamson flow model, a boundary layer approximation is taken into account. The non-dimensional, nonlinear, coupled ordinary differential equations with boundary condition are solved numerically using Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order iteration scheme. The influences of physical parameters on the velocity, temperature, concentration is analysed through graphical consequences. To validate the accuracy of the numerical… More >

Displaying 21-30 on page 3 of 63. Per Page