Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (227)
  • Open Access

    ARTICLE

    Optimized Convolutional Neural Network Models for Skin Lesion Classification

    Juan Pablo Villa-Pulgarin1, Anderson Alberto Ruales-Torres1,2, Daniel Arias-Garzón1, Mario Alejandro Bravo-Ortiz1, Harold Brayan Arteaga-Arteaga1, Alejandro Mora-Rubio1, Jesus Alejandro Alzate-Grisales1, Esteban Mercado-Ruiz1, M. Hassaballah3, Simon Orozco-Arias4,5, Oscar Cardona-Morales1, Reinel Tabares-Soto1,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2131-2148, 2022, DOI:10.32604/cmc.2022.019529 - 27 September 2021

    Abstract Skin cancer is one of the most severe diseases, and medical imaging is among the main tools for cancer diagnosis. The images provide information on the evolutionary stage, size, and location of tumor lesions. This paper focuses on the classification of skin lesion images considering a framework of four experiments to analyze the classification performance of Convolutional Neural Networks (CNNs) in distinguishing different skin lesions. The CNNs are based on transfer learning, taking advantage of ImageNet weights. Accordingly, in each experiment, different workflow stages are tested, including data augmentation and fine-tuning optimization. Three CNN models More >

  • Open Access

    ARTICLE

    Engagement Detection Based on Analyzing Micro Body Gestures Using 3D CNN

    Shoroog Khenkar1,*, Salma Kammoun Jarraya1,2

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2655-2677, 2022, DOI:10.32604/cmc.2022.019152 - 27 September 2021

    Abstract This paper proposes a novel, efficient and affordable approach to detect the students’ engagement levels in an e-learning environment by using webcams. Our method analyzes spatiotemporal features of e-learners’ micro body gestures, which will be mapped to emotions and appropriate engagement states. The proposed engagement detection model uses a three-dimensional convolutional neural network to analyze both temporal and spatial information across video frames. We follow a transfer learning approach by using the C3D model that was trained on the Sports-1M dataset. The adopted C3D model was used based on two different approaches; as a feature More >

  • Open Access

    ARTICLE

    A Saliency Based Image Fusion Framework for Skin Lesion Segmentation and Classification

    Javaria Tahir1, Syed Rameez Naqvi2,*, Khursheed Aurangzeb3, Musaed Alhussein3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3235-3250, 2022, DOI:10.32604/cmc.2022.018949 - 27 September 2021

    Abstract Melanoma, due to its higher mortality rate, is considered as one of the most pernicious types of skin cancers, mostly affecting the white populations. It has been reported a number of times and is now widely accepted, that early detection of melanoma increases the chances of the subject’s survival. Computer-aided diagnostic systems help the experts in diagnosing the skin lesion at earlier stages using machine learning techniques. In this work, we propose a framework that accurately segments, and later classifies, the lesion using improved image segmentation and fusion methods. The proposed technique takes an image More >

  • Open Access

    ARTICLE

    Human Gait Recognition Using Deep Learning and Improved Ant Colony Optimization

    Awais Khan1, Muhammad Attique Khan1, Muhammad Younus Javed1, Majed Alhaisoni2, Usman Tariq3, Seifedine Kadry4, Jung-In Choi5, Yunyoung Nam6,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2113-2130, 2022, DOI:10.32604/cmc.2022.018270 - 27 September 2021

    Abstract Human gait recognition (HGR) has received a lot of attention in the last decade as an alternative biometric technique. The main challenges in gait recognition are the change in in-person view angle and covariant factors. The major covariant factors are walking while carrying a bag and walking while wearing a coat. Deep learning is a new machine learning technique that is gaining popularity. Many techniques for HGR based on deep learning are presented in the literature. The requirement of an efficient framework is always required for correct and quick gait recognition. We proposed a fully… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning Based Rice Plant Disease Detection Model

    R. P. Narmadha1,*, N. Sengottaiyan2, R. J. Kavitha3

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1257-1271, 2022, DOI:10.32604/iasc.2022.020679 - 22 September 2021

    Abstract In agriculture, plant diseases are mainly accountable for reduction in productivity and leads to huge economic loss. Rice is the essential food crop in Asian countries and it gets easily affected by different kinds of diseases. Because of the advent of computer vision and deep learning (DL) techniques, the rice plant diseases can be detected and reduce the burden of the farmers to save the crops. To achieve this, a new DL based rice plant disease diagnosis is developed using Densely Convolution Neural Network (DenseNet) with multilayer perceptron (MLP), called DenseNet169-MLP. The proposed model aims… More >

  • Open Access

    ARTICLE

    Classification and Diagnosis of Lymphoma’s Histopathological Images Using Transfer Learning

    Schahrazad Soltane*, Sameer Alsharif , Salwa M.Serag Eldin

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 629-644, 2022, DOI:10.32604/csse.2022.019333 - 09 September 2021

    Abstract Current cancer diagnosis procedure requires expert knowledge and is time-consuming, which raises the need to build an accurate diagnosis support system for lymphoma identification and classification. Many studies have shown promising results using Machine Learning and, recently, Deep Learning to detect malignancy in cancer cells. However, the diversity and complexity of the morphological structure of lymphoma make it a challenging classification problem. In literature, many attempts were made to classify up to four simple types of lymphoma. This paper presents an approach using a reliable model capable of diagnosing seven different categories of rare and… More >

  • Open Access

    ARTICLE

    A Transfer Learning-Enabled Optimized Extreme Deep Learning Paradigm for Diagnosis of COVID-19

    Ahmed Reda*, Sherif Barakat, Amira Rezk

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1381-1399, 2022, DOI:10.32604/cmc.2022.019809 - 07 September 2021

    Abstract Many respiratory infections around the world have been caused by coronaviruses. COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate. There is a high need for computer-assisted diagnostics (CAD) in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems. Machine learning (ML) has been used to examine chest X-ray frames. In this paper, a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes, a pneumonia patient, a More >

  • Open Access

    ARTICLE

    AI Cannot Understand Memes: Experiments with OCR and Facial Emotions

    Ishaani Priyadarshini*, Chase Cotton

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 781-800, 2022, DOI:10.32604/cmc.2022.019284 - 07 September 2021

    Abstract

    The increasing capabilities of Artificial Intelligence (AI), has led researchers and visionaries to think in the direction of machines outperforming humans by gaining intelligence equal to or greater than humans, which may not always have a positive impact on the society. AI gone rogue, and Technological Singularity are major concerns in academia as well as the industry. It is necessary to identify the limitations of machines and analyze their incompetence, which could draw a line between human and machine intelligence. Internet memes are an amalgam of pictures, videos, underlying messages, ideas, sentiments, humor, and experiences,

    More >

  • Open Access

    ARTICLE

    Classification of Citrus Plant Diseases Using Deep Transfer Learning

    Muhammad Zia Ur Rehman1, Fawad Ahmed1, Muhammad Attique Khan2, Usman Tariq3, Sajjad Shaukat Jamal4, Jawad Ahmad5,*, Iqtadar Hussain6

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 1401-1417, 2022, DOI:10.32604/cmc.2022.019046 - 07 September 2021

    Abstract In recent years, the field of deep learning has played an important role towards automatic detection and classification of diseases in vegetables and fruits. This in turn has helped in improving the quality and production of vegetables and fruits. Citrus fruits are well known for their taste and nutritional values. They are one of the natural and well known sources of vitamin C and planted worldwide. There are several diseases which severely affect the quality and yield of citrus fruits. In this paper, a new deep learning based technique is proposed for citrus disease classification.… More >

  • Open Access

    REVIEW

    Deep Learning Applications for COVID-19 Analysis: A State-of-the-Art Survey

    Wenqian Li1, Xing Deng1,2,*, Haijian Shao1, Xia Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 65-98, 2021, DOI:10.32604/cmes.2021.016981 - 24 August 2021

    Abstract The COVID-19 has resulted in catastrophic situation and the deaths of millions of people all over the world. In this paper, the predictions of epidemiological propagation models, such as SIR and SEIR, are introduced to analyze the earlier COVID-19 propagation. The deep learning methods combined with transfer learning are familiar with classification-detection approaches based on chest X-ray and CT images are presented in detail. Besides, deep learning approaches have also been applied to lung ultrasound (LUS), which has been shown to be more sensitive than chest X-ray and CT images in detecting COVID-19. In the… More > Graphic Abstract

    Deep Learning Applications for COVID-19 Analysis: A <i>State-of-the-Art</i> Survey

Displaying 191-200 on page 20 of 227. Per Page