Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (149)
  • Open Access

    ARTICLE

    Simulated Annealing with Deep Learning Based Tongue Image Analysis for Heart Disease Diagnosis

    S. Sivasubramaniam*, S. P. Balamurugan

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 111-126, 2023, DOI:10.32604/iasc.2023.035199

    Abstract Tongue image analysis is an efficient and non-invasive technique to determine the internal organ condition of a patient in oriental medicine, for example, traditional Chinese medicine (TCM), Japanese traditional herbal medicine, and traditional Korean medicine (TKM). The diagnosis procedure is mainly based on the expert's knowledge depending upon the visual inspection comprising color, substance, coating, form, and motion of the tongue. But conventional tongue diagnosis has limitations since the procedure is inconsistent and subjective. Therefore, computer-aided tongue analyses have a greater potential to present objective and more consistent health assessments. This manuscript introduces a novel Simulated Annealing with Transfer Learning… More >

  • Open Access

    ARTICLE

    A Transfer Learning Approach Based on Ultrasound Images for Liver Cancer Detection

    Murtada K. Elbashir1, Alshimaa Mahmoud2, Ayman Mohamed Mostafa1,*, Eslam Hamouda1, Meshrif Alruily1, Sadeem M. Alotaibi1, Hosameldeen Shabana3,4, Mohamed Ezz1,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5105-5121, 2023, DOI:10.32604/cmc.2023.037728

    Abstract The convolutional neural network (CNN) is one of the main algorithms that is applied to deep transfer learning for classifying two essential types of liver lesions; Hemangioma and hepatocellular carcinoma (HCC). Ultrasound images, which are commonly available and have low cost and low risk compared to computerized tomography (CT) scan images, will be used as input for the model. A total of 350 ultrasound images belonging to 59 patients are used. The number of images with HCC is 202 and 148, respectively. These images were collected from ultrasound cases.info (28 Hemangiomas patients and 11 HCC patients), the department of radiology,… More >

  • Open Access

    ARTICLE

    Multi-View & Transfer Learning for Epilepsy Recognition Based on EEG Signals

    Jiali Wang1, Bing Li2, Chengyu Qiu1, Xinyun Zhang1, Yuting Cheng1, Peihua Wang1, Ta Zhou3, Hong Ge2, Yuanpeng Zhang1,3,*, Jing Cai3,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4843-4866, 2023, DOI:10.32604/cmc.2023.037457

    Abstract Epilepsy is a central nervous system disorder in which brain activity becomes abnormal. Electroencephalogram (EEG) signals, as recordings of brain activity, have been widely used for epilepsy recognition. To study epileptic EEG signals and develop artificial intelligence (AI)-assist recognition, a multi-view transfer learning (MVTL-LSR) algorithm based on least squares regression is proposed in this study. Compared with most existing multi-view transfer learning algorithms, MVTL-LSR has two merits: (1) Since traditional transfer learning algorithms leverage knowledge from different sources, which poses a significant risk to data privacy. Therefore, we develop a knowledge transfer mechanism that can protect the security of source… More >

  • Open Access

    REVIEW

    A Survey on Artificial Intelligence in Posture Recognition

    Xiaoyan Jiang1,2, Zuojin Hu1, Shuihua Wang2, Yudong Zhang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 35-82, 2023, DOI:10.32604/cmes.2023.027676

    Abstract Over the years, the continuous development of new technology has promoted research in the field of posture recognition and also made the application field of posture recognition have been greatly expanded. The purpose of this paper is to introduce the latest methods of posture recognition and review the various techniques and algorithms of posture recognition in recent years, such as scale-invariant feature transform, histogram of oriented gradients, support vector machine (SVM), Gaussian mixture model, dynamic time warping, hidden Markov model (HMM), lightweight network, convolutional neural network (CNN). We also investigate improved methods of CNN, such as stacked hourglass networks, multi-stage… More >

  • Open Access

    ARTICLE

    Intelligent Beetle Antenna Search with Deep Transfer Learning Enabled Medical Image Classification Model

    Mohamed Ibrahim Waly*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3159-3174, 2023, DOI:10.32604/csse.2023.035900

    Abstract Recently, computer assisted diagnosis (CAD) model creation has become more dependent on medical picture categorization. It is often used to identify several conditions, including brain disorders, diabetic retinopathy, and skin cancer. Most traditional CAD methods relied on textures, colours, and forms. Because many models are issue-oriented, they need a more substantial capacity to generalize and cannot capture high-level problem domain notions. Recent deep learning (DL) models have been published, providing a practical way to develop models specifically for classifying input medical pictures. This paper offers an intelligent beetle antenna search (IBAS-DTL) method for classifying medical images facilitated by deep transfer… More >

  • Open Access

    ARTICLE

    An Efficient and Robust Hand Gesture Recognition System of Sign Language Employing Finetuned Inception-V3 and Efficientnet-B0 Network

    Adnan Hussain1, Sareer Ul Amin2, Muhammad Fayaz3, Sanghyun Seo4,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3509-3525, 2023, DOI:10.32604/csse.2023.037258

    Abstract Hand Gesture Recognition (HGR) is a promising research area with an extensive range of applications, such as surgery, video game techniques, and sign language translation, where sign language is a complicated structured form of hand gestures. The fundamental building blocks of structured expressions in sign language are the arrangement of the fingers, the orientation of the hand, and the hand’s position concerning the body. The importance of HGR has increased due to the increasing number of touchless applications and the rapid growth of the hearing-impaired population. Therefore, real-time HGR is one of the most effective interaction methods between computers and… More >

  • Open Access

    ARTICLE

    Modified Metaheuristics with Transfer Learning Based Insect Pest Classification for Agricultural Crops

    Saud Yonbawi1, Sultan Alahmari2, T. Satyanarayana murthy3, Ravuri Daniel4, E. Laxmi Lydia5, Mohamad Khairi Ishak6, Hend Khalid Alkahtani7,*, Ayman Aljarbouh8, Samih M. Mostafa9

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3847-3864, 2023, DOI:10.32604/csse.2023.036552

    Abstract Crop insect detection becomes a tedious process for agronomists because a substantial part of the crops is damaged, and due to the pest attacks, the quality is degraded. They are the major reason behind crop quality degradation and diminished crop productivity. Hence, accurate pest detection is essential to guarantee safety and crop quality. Conventional identification of insects necessitates highly trained taxonomists to detect insects precisely based on morphological features. Lately, some progress has been made in agriculture by employing machine learning (ML) to classify and detect pests. This study introduces a Modified Metaheuristics with Transfer Learning based Insect Pest Classification… More >

  • Open Access

    ARTICLE

    Image Emotion Classification Network Based on Multilayer Attentional Interaction, Adaptive Feature Aggregation

    Xiaorui Zhang1,2,3,*, Chunlin Yuan1, Wei Sun3,4, Sunil Kumar Jha5

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4273-4291, 2023, DOI:10.32604/cmc.2023.036975

    Abstract The image emotion classification task aims to use the model to automatically predict the emotional response of people when they see the image. Studies have shown that certain local regions are more likely to inspire an emotional response than the whole image. However, existing methods perform poorly in predicting the details of emotional regions and are prone to overfitting during training due to the small size of the dataset. Therefore, this study proposes an image emotion classification network based on multilayer attentional interaction and adaptive feature aggregation. To perform more accurate emotional region prediction, this study designs a multilayer attentional… More >

  • Open Access

    ARTICLE

    Deep Transfer Learning-Enabled Activity Identification and Fall Detection for Disabled People

    Majdy M. Eltahir1, Adil Yousif2, Fadwa Alrowais3, Mohamed K. Nour4, Radwa Marzouk5, Hatim Dafaalla6, Asma Abbas Hassan Elnour6, Amira Sayed A. Aziz7, Manar Ahmed Hamza8,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3239-3255, 2023, DOI:10.32604/cmc.2023.034037

    Abstract The human motion data collected using wearables like smartwatches can be used for activity recognition and emergency event detection. This is especially applicable in the case of elderly or disabled people who live self-reliantly in their homes. These sensors produce a huge volume of physical activity data that necessitates real-time recognition, especially during emergencies. Falling is one of the most important problems confronted by older people and people with movement disabilities. Numerous previous techniques were introduced and a few used webcam to monitor the activity of elderly or disabled people. But, the costs incurred upon installation and operation are high,… More >

  • Open Access

    ARTICLE

    VMCTE: Visualization-Based Malware Classification Using Transfer and Ensemble Learning

    Zhiguo Chen1,2,*, Jiabing Cao1,2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4445-4465, 2023, DOI:10.32604/cmc.2023.038639

    Abstract The Corona Virus Disease 2019 (COVID-19) effect has made telecommuting and remote learning the norm. The growing number of Internet-connected devices provides cyber attackers with more attack vectors. The development of malware by criminals also incorporates a number of sophisticated obfuscation techniques, making it difficult to classify and detect malware using conventional approaches. Therefore, this paper proposes a novel visualization-based malware classification system using transfer and ensemble learning (VMCTE). VMCTE has a strong anti-interference ability. Even if malware uses obfuscation, fuzzing, encryption, and other techniques to evade detection, it can be accurately classified into its corresponding malware family. Unlike traditional… More >

Displaying 21-30 on page 3 of 149. Per Page